Enter a problem...
Calculus Examples
Step 1
Substitute into the equation. This will make the quadratic formula easy to use.
Step 2
Step 2.1
Factor out of .
Step 2.2
Factor out of .
Step 2.3
Factor out of .
Step 2.4
Factor out of .
Step 2.5
Factor out of .
Step 3
Step 3.1
Divide each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of .
Step 3.2.1.1
Cancel the common factor.
Step 3.2.1.2
Divide by .
Step 3.3
Simplify the right side.
Step 3.3.1
Divide by .
Step 4
Use the quadratic formula to find the solutions.
Step 5
Substitute the values , , and into the quadratic formula and solve for .
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Raise to the power of .
Step 6.1.2
Multiply .
Step 6.1.2.1
Multiply by .
Step 6.1.2.2
Multiply by .
Step 6.1.3
Add and .
Step 6.2
Multiply by .
Step 7
The final answer is the combination of both solutions.
Step 8
Substitute the real value of back into the solved equation.
Step 9
Solve the first equation for .
Step 10
Step 10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 10.2
The complete solution is the result of both the positive and negative portions of the solution.
Step 10.2.1
First, use the positive value of the to find the first solution.
Step 10.2.2
Next, use the negative value of the to find the second solution.
Step 10.2.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 11
Solve the second equation for .
Step 12
Step 12.1
Remove parentheses.
Step 12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 12.3
Simplify .
Step 12.3.1
Rewrite as .
Step 12.3.2
Rewrite as .
Step 12.3.3
Rewrite as .
Step 12.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 12.4.1
First, use the positive value of the to find the first solution.
Step 12.4.2
Next, use the negative value of the to find the second solution.
Step 12.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 13
The solution to is .