Calculus Examples

Solve for x (x^2)/9=(x^2)/36+h
Step 1
Multiply both sides by .
Step 2
Simplify.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.1.1.1
Cancel the common factor.
Step 2.1.1.2
Rewrite the expression.
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Simplify .
Tap for more steps...
Step 2.2.1.1
Apply the distributive property.
Step 2.2.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.2.1.2.1
Factor out of .
Step 2.2.1.2.2
Cancel the common factor.
Step 2.2.1.2.3
Rewrite the expression.
Step 2.2.1.3
Move to the left of .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.1.3
Combine and .
Step 3.1.4
Combine the numerators over the common denominator.
Step 3.1.5
Simplify the numerator.
Tap for more steps...
Step 3.1.5.1
Move to the left of .
Step 3.1.5.2
Subtract from .
Step 3.2
Multiply both sides of the equation by .
Step 3.3
Simplify both sides of the equation.
Tap for more steps...
Step 3.3.1
Simplify the left side.
Tap for more steps...
Step 3.3.1.1
Simplify .
Tap for more steps...
Step 3.3.1.1.1
Combine.
Step 3.3.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.3.1.1.2.1
Cancel the common factor.
Step 3.3.1.1.2.2
Rewrite the expression.
Step 3.3.1.1.3
Cancel the common factor of .
Tap for more steps...
Step 3.3.1.1.3.1
Cancel the common factor.
Step 3.3.1.1.3.2
Divide by .
Step 3.3.2
Simplify the right side.
Tap for more steps...
Step 3.3.2.1
Simplify .
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.1.1.1
Factor out of .
Step 3.3.2.1.1.2
Cancel the common factor.
Step 3.3.2.1.1.3
Rewrite the expression.
Step 3.3.2.1.2
Multiply by .
Step 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.5
Simplify .
Tap for more steps...
Step 3.5.1
Rewrite as .
Tap for more steps...
Step 3.5.1.1
Factor out of .
Step 3.5.1.2
Rewrite as .
Step 3.5.1.3
Add parentheses.
Step 3.5.2
Pull terms out from under the radical.
Step 3.6
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.6.1
First, use the positive value of the to find the first solution.
Step 3.6.2
Next, use the negative value of the to find the second solution.
Step 3.6.3
The complete solution is the result of both the positive and negative portions of the solution.