Enter a problem...
Calculus Examples
Step 1
Rewrite the equation as .
Step 2
Step 2.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Rewrite using the commutative property of multiplication.
Step 2.2.1.2
Factor out of .
Step 2.2.1.2.1
Factor out of .
Step 2.2.1.2.2
Factor out of .
Step 2.2.1.2.3
Factor out of .
Step 3
To remove the radical on the left side of the equation, square both sides of the equation.
Step 4
Step 4.1
Use to rewrite as .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify by multiplying through.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Reorder.
Step 4.2.1.1.2.1
Move to the left of .
Step 4.2.1.1.2.2
Rewrite using the commutative property of multiplication.
Step 4.2.1.2
Multiply by by adding the exponents.
Step 4.2.1.2.1
Move .
Step 4.2.1.2.2
Multiply by .
Step 4.2.1.3
Use the power rule to distribute the exponent.
Step 4.2.1.3.1
Apply the product rule to .
Step 4.2.1.3.2
Apply the product rule to .
Step 4.2.1.4
Raise to the power of .
Step 4.2.1.5
Multiply the exponents in .
Step 4.2.1.5.1
Apply the power rule and multiply exponents, .
Step 4.2.1.5.2
Cancel the common factor of .
Step 4.2.1.5.2.1
Cancel the common factor.
Step 4.2.1.5.2.2
Rewrite the expression.
Step 4.2.1.6
Simplify.
Step 4.2.1.7
Simplify by multiplying through.
Step 4.2.1.7.1
Apply the distributive property.
Step 4.2.1.7.2
Reorder.
Step 4.2.1.7.2.1
Rewrite using the commutative property of multiplication.
Step 4.2.1.7.2.2
Rewrite using the commutative property of multiplication.
Step 4.2.1.8
Simplify each term.
Step 4.2.1.8.1
Multiply by .
Step 4.2.1.8.2
Multiply by .
Step 4.3
Simplify the right side.
Step 4.3.1
One to any power is one.
Step 5
Step 5.1
Subtract from both sides of the equation.
Step 5.2
Use the quadratic formula to find the solutions.
Step 5.3
Substitute the values , , and into the quadratic formula and solve for .
Step 5.4
Simplify.
Step 5.4.1
Simplify the numerator.
Step 5.4.1.1
Rewrite as .
Step 5.4.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 5.4.1.3
Simplify.
Step 5.4.1.3.1
Factor out of .
Step 5.4.1.3.1.1
Factor out of .
Step 5.4.1.3.1.2
Factor out of .
Step 5.4.1.3.1.3
Factor out of .
Step 5.4.1.3.2
Multiply by .
Step 5.4.1.4
Factor out of .
Step 5.4.1.4.1
Factor out of .
Step 5.4.1.4.2
Factor out of .
Step 5.4.1.4.3
Factor out of .
Step 5.4.1.5
Combine exponents.
Step 5.4.1.5.1
Multiply by .
Step 5.4.1.5.2
Raise to the power of .
Step 5.4.1.5.3
Raise to the power of .
Step 5.4.1.5.4
Use the power rule to combine exponents.
Step 5.4.1.5.5
Add and .
Step 5.4.1.6
Rewrite as .
Step 5.4.1.6.1
Rewrite as .
Step 5.4.1.6.2
Rewrite as .
Step 5.4.1.6.3
Add parentheses.
Step 5.4.1.7
Pull terms out from under the radical.
Step 5.4.2
Multiply by .
Step 5.4.3
Simplify .
Step 5.5
The final answer is the combination of both solutions.