Calculus Examples

Find the Derivative - d/dx (4x+1)(1-x)^3
(4x+1)(1-x)3
Step 1
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=4x+1 and g(x)=(1-x)3.
(4x+1)ddx[(1-x)3]+(1-x)3ddx[4x+1]
Step 2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x3 and g(x)=1-x.
Tap for more steps...
Step 2.1
To apply the Chain Rule, set u as 1-x.
(4x+1)(ddu[u3]ddx[1-x])+(1-x)3ddx[4x+1]
Step 2.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=3.
(4x+1)(3u2ddx[1-x])+(1-x)3ddx[4x+1]
Step 2.3
Replace all occurrences of u with 1-x.
(4x+1)(3(1-x)2ddx[1-x])+(1-x)3ddx[4x+1]
(4x+1)(3(1-x)2ddx[1-x])+(1-x)3ddx[4x+1]
Step 3
Differentiate.
Tap for more steps...
Step 3.1
Move 3 to the left of 4x+1.
3(4x+1)(1-x)2ddx[1-x]+(1-x)3ddx[4x+1]
Step 3.2
By the Sum Rule, the derivative of 1-x with respect to x is ddx[1]+ddx[-x].
3(4x+1)(1-x)2(ddx[1]+ddx[-x])+(1-x)3ddx[4x+1]
Step 3.3
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
3(4x+1)(1-x)2(0+ddx[-x])+(1-x)3ddx[4x+1]
Step 3.4
Add 0 and ddx[-x].
3(4x+1)(1-x)2ddx[-x]+(1-x)3ddx[4x+1]
Step 3.5
Since -1 is constant with respect to x, the derivative of -x with respect to x is -ddx[x].
3(4x+1)(1-x)2(-ddx[x])+(1-x)3ddx[4x+1]
Step 3.6
Multiply -1 by 3.
-3(4x+1)(1-x)2ddx[x]+(1-x)3ddx[4x+1]
Step 3.7
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
-3(4x+1)(1-x)21+(1-x)3ddx[4x+1]
Step 3.8
Multiply -3 by 1.
-3(4x+1)(1-x)2+(1-x)3ddx[4x+1]
Step 3.9
By the Sum Rule, the derivative of 4x+1 with respect to x is ddx[4x]+ddx[1].
-3(4x+1)(1-x)2+(1-x)3(ddx[4x]+ddx[1])
Step 3.10
Since 4 is constant with respect to x, the derivative of 4x with respect to x is 4ddx[x].
-3(4x+1)(1-x)2+(1-x)3(4ddx[x]+ddx[1])
Step 3.11
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
-3(4x+1)(1-x)2+(1-x)3(41+ddx[1])
Step 3.12
Multiply 4 by 1.
-3(4x+1)(1-x)2+(1-x)3(4+ddx[1])
Step 3.13
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
-3(4x+1)(1-x)2+(1-x)3(4+0)
Step 3.14
Simplify the expression.
Tap for more steps...
Step 3.14.1
Add 4 and 0.
-3(4x+1)(1-x)2+(1-x)34
Step 3.14.2
Move 4 to the left of (1-x)3.
-3(4x+1)(1-x)2+4(1-x)3
-3(4x+1)(1-x)2+4(1-x)3
-3(4x+1)(1-x)2+4(1-x)3
Step 4
Simplify.
Tap for more steps...
Step 4.1
Apply the distributive property.
(-3(4x)-31)(1-x)2+4(1-x)3
Step 4.2
Multiply 4 by -3.
(-12x-31)(1-x)2+4(1-x)3
Step 4.3
Multiply -3 by 1.
(-12x-3)(1-x)2+4(1-x)3
Step 4.4
Factor (1-x)2 out of (-12x-3)(1-x)2+4(1-x)3.
Tap for more steps...
Step 4.4.1
Factor (1-x)2 out of (-12x-3)(1-x)2.
(1-x)2(-12x-3)+4(1-x)3
Step 4.4.2
Factor (1-x)2 out of 4(1-x)3.
(1-x)2(-12x-3)+(1-x)2(4(1-x))
Step 4.4.3
Factor (1-x)2 out of (1-x)2(-12x-3)+(1-x)2(4(1-x)).
(1-x)2(-12x-3+4(1-x))
(1-x)2(-12x-3+4(1-x))
Step 4.5
Rewrite (1-x)2 as (1-x)(1-x).
(1-x)(1-x)(-12x-3+4(1-x))
Step 4.6
Expand (1-x)(1-x) using the FOIL Method.
Tap for more steps...
Step 4.6.1
Apply the distributive property.
(1(1-x)-x(1-x))(-12x-3+4(1-x))
Step 4.6.2
Apply the distributive property.
(11+1(-x)-x(1-x))(-12x-3+4(1-x))
Step 4.6.3
Apply the distributive property.
(11+1(-x)-x1-x(-x))(-12x-3+4(1-x))
(11+1(-x)-x1-x(-x))(-12x-3+4(1-x))
Step 4.7
Simplify and combine like terms.
Tap for more steps...
Step 4.7.1
Simplify each term.
Tap for more steps...
Step 4.7.1.1
Multiply 1 by 1.
(1+1(-x)-x1-x(-x))(-12x-3+4(1-x))
Step 4.7.1.2
Multiply -x by 1.
(1-x-x1-x(-x))(-12x-3+4(1-x))
Step 4.7.1.3
Multiply -1 by 1.
(1-x-x-x(-x))(-12x-3+4(1-x))
Step 4.7.1.4
Rewrite using the commutative property of multiplication.
(1-x-x-1-1xx)(-12x-3+4(1-x))
Step 4.7.1.5
Multiply x by x by adding the exponents.
Tap for more steps...
Step 4.7.1.5.1
Move x.
(1-x-x-1-1(xx))(-12x-3+4(1-x))
Step 4.7.1.5.2
Multiply x by x.
(1-x-x-1-1x2)(-12x-3+4(1-x))
(1-x-x-1-1x2)(-12x-3+4(1-x))
Step 4.7.1.6
Multiply -1 by -1.
(1-x-x+1x2)(-12x-3+4(1-x))
Step 4.7.1.7
Multiply x2 by 1.
(1-x-x+x2)(-12x-3+4(1-x))
(1-x-x+x2)(-12x-3+4(1-x))
Step 4.7.2
Subtract x from -x.
(1-2x+x2)(-12x-3+4(1-x))
(1-2x+x2)(-12x-3+4(1-x))
Step 4.8
Simplify each term.
Tap for more steps...
Step 4.8.1
Apply the distributive property.
(1-2x+x2)(-12x-3+41+4(-x))
Step 4.8.2
Multiply 4 by 1.
(1-2x+x2)(-12x-3+4+4(-x))
Step 4.8.3
Multiply -1 by 4.
(1-2x+x2)(-12x-3+4-4x)
(1-2x+x2)(-12x-3+4-4x)
Step 4.9
Subtract 4x from -12x.
(1-2x+x2)(-16x-3+4)
Step 4.10
Add -3 and 4.
(1-2x+x2)(-16x+1)
Step 4.11
Expand (1-2x+x2)(-16x+1) by multiplying each term in the first expression by each term in the second expression.
1(-16x)+11-2x(-16x)-2x1+x2(-16x)+x21
Step 4.12
Simplify each term.
Tap for more steps...
Step 4.12.1
Multiply -16x by 1.
-16x+11-2x(-16x)-2x1+x2(-16x)+x21
Step 4.12.2
Multiply 1 by 1.
-16x+1-2x(-16x)-2x1+x2(-16x)+x21
Step 4.12.3
Rewrite using the commutative property of multiplication.
-16x+1-2-16xx-2x1+x2(-16x)+x21
Step 4.12.4
Multiply x by x by adding the exponents.
Tap for more steps...
Step 4.12.4.1
Move x.
-16x+1-2-16(xx)-2x1+x2(-16x)+x21
Step 4.12.4.2
Multiply x by x.
-16x+1-2-16x2-2x1+x2(-16x)+x21
-16x+1-2-16x2-2x1+x2(-16x)+x21
Step 4.12.5
Multiply -2 by -16.
-16x+1+32x2-2x1+x2(-16x)+x21
Step 4.12.6
Multiply -2 by 1.
-16x+1+32x2-2x+x2(-16x)+x21
Step 4.12.7
Rewrite using the commutative property of multiplication.
-16x+1+32x2-2x-16x2x+x21
Step 4.12.8
Multiply x2 by x by adding the exponents.
Tap for more steps...
Step 4.12.8.1
Move x.
-16x+1+32x2-2x-16(xx2)+x21
Step 4.12.8.2
Multiply x by x2.
Tap for more steps...
Step 4.12.8.2.1
Raise x to the power of 1.
-16x+1+32x2-2x-16(x1x2)+x21
Step 4.12.8.2.2
Use the power rule aman=am+n to combine exponents.
-16x+1+32x2-2x-16x1+2+x21
-16x+1+32x2-2x-16x1+2+x21
Step 4.12.8.3
Add 1 and 2.
-16x+1+32x2-2x-16x3+x21
-16x+1+32x2-2x-16x3+x21
Step 4.12.9
Multiply x2 by 1.
-16x+1+32x2-2x-16x3+x2
-16x+1+32x2-2x-16x3+x2
Step 4.13
Subtract 2x from -16x.
-18x+1+32x2-16x3+x2
Step 4.14
Add 32x2 and x2.
-18x+1-16x3+33x2
-18x+1-16x3+33x2
 [x2  12  π  xdx ]