Calculus Examples

Find the Horizontal Tangent Line y=x^2+2x-3
Step 1
Set as a function of .
Step 2
Find the derivative.
Tap for more steps...
Step 2.1
Differentiate.
Tap for more steps...
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Add and .
Step 3
Set the derivative equal to then solve the equation .
Tap for more steps...
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Divide by .
Step 3.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.3.1
Divide by .
Step 4
Solve the original function at .
Tap for more steps...
Step 4.1
Replace the variable with in the expression.
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Raise to the power of .
Step 4.2.1.2
Multiply by .
Step 4.2.2
Simplify by subtracting numbers.
Tap for more steps...
Step 4.2.2.1
Subtract from .
Step 4.2.2.2
Subtract from .
Step 4.2.3
The final answer is .
Step 5
The horizontal tangent line on function is .
Step 6