Enter a problem...
Calculus Examples
Step 1
Differentiate using the Quotient Rule which states that is where and .
Step 2
Step 2.1
Differentiate using the Power Rule which states that is where .
Step 2.2
Move to the left of .
Step 2.3
By the Sum Rule, the derivative of with respect to is .
Step 2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.5
Add and .
Step 3
The derivative of with respect to is .
Step 4
Step 4.1
Combine and .
Step 4.2
Cancel the common factor of and .
Step 4.2.1
Factor out of .
Step 4.2.2
Cancel the common factors.
Step 4.2.2.1
Raise to the power of .
Step 4.2.2.2
Factor out of .
Step 4.2.2.3
Cancel the common factor.
Step 4.2.2.4
Rewrite the expression.
Step 4.2.2.5
Divide by .
Step 5
Step 5.1
Apply the distributive property.
Step 5.2
Apply the distributive property.
Step 5.3
Simplify the numerator.
Step 5.3.1
Simplify each term.
Step 5.3.1.1
Multiply by .
Step 5.3.1.2
Simplify by moving inside the logarithm.
Step 5.3.2
Subtract from .
Step 5.3.3
Reorder factors in .
Step 5.4
Factor out of .
Step 5.4.1
Factor out of .
Step 5.4.2
Factor out of .
Step 5.4.3
Factor out of .