Calculus Examples

Find the Derivative - d/dx (3x^2)/2-7/(5x^2)
Step 1
By the Sum Rule, the derivative of with respect to is .
Step 2
Evaluate .
Tap for more steps...
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Power Rule which states that is where .
Step 2.3
Combine and .
Step 2.4
Multiply by .
Step 2.5
Combine and .
Step 2.6
Cancel the common factor of and .
Tap for more steps...
Step 2.6.1
Factor out of .
Step 2.6.2
Cancel the common factors.
Tap for more steps...
Step 2.6.2.1
Factor out of .
Step 2.6.2.2
Cancel the common factor.
Step 2.6.2.3
Rewrite the expression.
Step 2.6.2.4
Divide by .
Step 3
Evaluate .
Tap for more steps...
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Rewrite as .
Step 3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.3.1
To apply the Chain Rule, set as .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Replace all occurrences of with .
Step 3.4
Differentiate using the Power Rule which states that is where .
Step 3.5
Multiply the exponents in .
Tap for more steps...
Step 3.5.1
Apply the power rule and multiply exponents, .
Step 3.5.2
Multiply by .
Step 3.6
Multiply by .
Step 3.7
Raise to the power of .
Step 3.8
Use the power rule to combine exponents.
Step 3.9
Subtract from .
Step 3.10
Multiply by .
Step 3.11
Combine and .
Step 3.12
Multiply by .
Step 3.13
Combine and .
Step 3.14
Move to the denominator using the negative exponent rule .