Enter a problem...
Calculus Examples
Step 1
Differentiate using the Quotient Rule which states that is where and .
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
Add and .
Step 2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.5
Differentiate using the Power Rule which states that is where .
Step 2.6
Simplify the expression.
Step 2.6.1
Multiply by .
Step 2.6.2
Move to the left of .
Step 2.6.3
Rewrite as .
Step 2.7
By the Sum Rule, the derivative of with respect to is .
Step 2.8
Since is constant with respect to , the derivative of with respect to is .
Step 2.9
Add and .
Step 2.10
Differentiate using the Power Rule which states that is where .
Step 2.11
Multiply by .
Step 3
Step 3.1
Apply the distributive property.
Step 3.2
Apply the distributive property.
Step 3.3
Simplify the numerator.
Step 3.3.1
Simplify each term.
Step 3.3.1.1
Multiply by .
Step 3.3.1.2
Multiply by .
Step 3.3.1.3
Multiply .
Step 3.3.1.3.1
Multiply by .
Step 3.3.1.3.2
Multiply by .
Step 3.3.2
Combine the opposite terms in .
Step 3.3.2.1
Add and .
Step 3.3.2.2
Add and .
Step 3.3.3
Subtract from .
Step 3.4
Move the negative in front of the fraction.