Calculus Examples

Find the Derivative - d/dx (x^2+5x-1)/(x^2)
Step 1
Differentiate using the Quotient Rule which states that is where and .
Step 2
Differentiate.
Tap for more steps...
Step 2.1
Multiply the exponents in .
Tap for more steps...
Step 2.1.1
Apply the power rule and multiply exponents, .
Step 2.1.2
Multiply by .
Step 2.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.5
Differentiate using the Power Rule which states that is where .
Step 2.6
Multiply by .
Step 2.7
Since is constant with respect to , the derivative of with respect to is .
Step 2.8
Add and .
Step 2.9
Differentiate using the Power Rule which states that is where .
Step 2.10
Simplify with factoring out.
Tap for more steps...
Step 2.10.1
Multiply by .
Step 2.10.2
Factor out of .
Tap for more steps...
Step 2.10.2.1
Factor out of .
Step 2.10.2.2
Factor out of .
Step 2.10.2.3
Factor out of .
Step 3
Cancel the common factors.
Tap for more steps...
Step 3.1
Factor out of .
Step 3.2
Cancel the common factor.
Step 3.3
Rewrite the expression.
Step 4
Simplify.
Tap for more steps...
Step 4.1
Apply the distributive property.
Step 4.2
Apply the distributive property.
Step 4.3
Simplify the numerator.
Tap for more steps...
Step 4.3.1
Simplify each term.
Tap for more steps...
Step 4.3.1.1
Rewrite using the commutative property of multiplication.
Step 4.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 4.3.1.2.1
Move .
Step 4.3.1.2.2
Multiply by .
Step 4.3.1.3
Move to the left of .
Step 4.3.1.4
Multiply by .
Step 4.3.1.5
Multiply by .
Step 4.3.2
Combine the opposite terms in .
Tap for more steps...
Step 4.3.2.1
Subtract from .
Step 4.3.2.2
Add and .
Step 4.3.3
Subtract from .
Step 4.4
Factor out of .
Step 4.5
Rewrite as .
Step 4.6
Factor out of .
Step 4.7
Rewrite as .
Step 4.8
Move the negative in front of the fraction.