Enter a problem...
Calculus Examples
Step 1
Step 1.1
To apply the Chain Rule, set as .
Step 1.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.3
Replace all occurrences of with .
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 2.4
Multiply by .
Step 2.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.6
Differentiate using the Power Rule which states that is where .
Step 2.7
Simplify the expression.
Step 2.7.1
Multiply by .
Step 2.7.2
Rewrite as .
Step 2.8
Differentiate using the Power Rule which states that is where .
Step 3
Rewrite the expression using the negative exponent rule .