Enter a problem...
Calculus Examples
Step 1
By the Sum Rule, the derivative of with respect to is .
Step 2
Step 2.1
Differentiate using the chain rule, which states that is where and .
Step 2.1.1
To apply the Chain Rule, set as .
Step 2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.1.3
Replace all occurrences of with .
Step 2.2
Differentiate using the chain rule, which states that is where and .
Step 2.2.1
To apply the Chain Rule, set as .
Step 2.2.2
The derivative of with respect to is .
Step 2.2.3
Replace all occurrences of with .
Step 2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4
Differentiate using the Power Rule which states that is where .
Step 2.5
Multiply by .
Step 2.6
Move to the left of .
Step 2.7
Multiply by .
Step 3
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Differentiate using the chain rule, which states that is where and .
Step 3.2.1
To apply the Chain Rule, set as .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Replace all occurrences of with .
Step 3.3
Differentiate using the chain rule, which states that is where and .
Step 3.3.1
To apply the Chain Rule, set as .
Step 3.3.2
The derivative of with respect to is .
Step 3.3.3
Replace all occurrences of with .
Step 3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.5
Differentiate using the Power Rule which states that is where .
Step 3.6
Multiply by .
Step 3.7
Multiply by .
Step 3.8
Multiply by .
Step 3.9
Multiply by .
Step 4
Step 4.1
Factor out of .
Step 4.1.1
Factor out of .
Step 4.1.2
Factor out of .
Step 4.1.3
Factor out of .
Step 4.2
Apply pythagorean identity.
Step 4.3
Multiply by .