Enter a problem...
Calculus Examples
Step 1
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2
Step 2.1
Differentiate using the chain rule, which states that is where and .
Step 2.1.1
To apply the Chain Rule, set as .
Step 2.1.2
The derivative of with respect to is .
Step 2.1.3
Replace all occurrences of with .
Step 2.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.5
Add and .
Step 2.6
Multiply by .
Step 3
Add and .