Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate using the Quotient Rule which states that is where and .
Step 1.2
Differentiate.
Step 1.2.1
Differentiate using the Power Rule which states that is where .
Step 1.2.2
Move to the left of .
Step 1.2.3
By the Sum Rule, the derivative of with respect to is .
Step 1.2.4
Differentiate using the Power Rule which states that is where .
Step 1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.6
Simplify the expression.
Step 1.2.6.1
Add and .
Step 1.2.6.2
Multiply by .
Step 1.3
Simplify.
Step 1.3.1
Apply the distributive property.
Step 1.3.2
Apply the distributive property.
Step 1.3.3
Simplify the numerator.
Step 1.3.3.1
Simplify each term.
Step 1.3.3.1.1
Multiply by by adding the exponents.
Step 1.3.3.1.1.1
Move .
Step 1.3.3.1.1.2
Multiply by .
Step 1.3.3.1.2
Multiply by .
Step 1.3.3.2
Subtract from .
Step 1.3.4
Factor out of .
Step 1.3.4.1
Factor out of .
Step 1.3.4.2
Factor out of .
Step 1.3.4.3
Factor out of .
Step 2
Step 2.1
Set the numerator equal to zero.
Step 2.2
Solve the equation for .
Step 2.2.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.2.2
Set equal to .
Step 2.2.3
Set equal to and solve for .
Step 2.2.3.1
Set equal to .
Step 2.2.3.2
Add to both sides of the equation.
Step 2.2.4
The final solution is all the values that make true.
Step 3
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Step 3.2.1
Raising to any positive power yields .
Step 3.2.2
Subtract from .
Step 3.2.3
Divide by .
Step 3.2.4
The final answer is .
Step 4
Step 4.1
Replace the variable with in the expression.
Step 4.2
Simplify the result.
Step 4.2.1
Raise to the power of .
Step 4.2.2
Subtract from .
Step 4.2.3
Divide by .
Step 4.2.4
The final answer is .
Step 5
The horizontal tangent lines on function are .
Step 6