Calculus Examples

Find the Derivative - d/d@VAR f(x)=( fourth root of x^2+1)^3
Step 1
Rewrite as .
Step 2
Use to rewrite as .
Step 3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.1
To apply the Chain Rule, set as .
Step 3.2
Differentiate using the Power Rule which states that is where .
Step 3.3
Replace all occurrences of with .
Step 4
To write as a fraction with a common denominator, multiply by .
Step 5
Combine and .
Step 6
Combine the numerators over the common denominator.
Step 7
Simplify the numerator.
Tap for more steps...
Step 7.1
Multiply by .
Step 7.2
Subtract from .
Step 8
Combine fractions.
Tap for more steps...
Step 8.1
Move the negative in front of the fraction.
Step 8.2
Combine and .
Step 8.3
Move to the denominator using the negative exponent rule .
Step 9
By the Sum Rule, the derivative of with respect to is .
Step 10
Differentiate using the Power Rule which states that is where .
Step 11
Since is constant with respect to , the derivative of with respect to is .
Step 12
Simplify terms.
Tap for more steps...
Step 12.1
Add and .
Step 12.2
Combine and .
Step 12.3
Multiply by .
Step 12.4
Combine and .
Step 12.5
Factor out of .
Step 13
Cancel the common factors.
Tap for more steps...
Step 13.1
Factor out of .
Step 13.2
Cancel the common factor.
Step 13.3
Rewrite the expression.