Enter a problem...
Calculus Examples
Step 1
By the Sum Rule, the derivative of with respect to is .
Step 2
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Power Rule which states that is where .
Step 2.3
Combine and .
Step 2.4
Multiply by .
Step 2.5
Combine and .
Step 2.6
Cancel the common factor of and .
Step 2.6.1
Factor out of .
Step 2.6.2
Cancel the common factors.
Step 2.6.2.1
Factor out of .
Step 2.6.2.2
Cancel the common factor.
Step 2.6.2.3
Rewrite the expression.
Step 2.6.2.4
Divide by .
Step 3
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Differentiate using the Power Rule which states that is where .
Step 3.3
Multiply by .
Step 3.4
Combine and .
Step 3.5
Multiply by .
Step 3.6
Combine and .
Step 3.7
Cancel the common factor of and .
Step 3.7.1
Factor out of .
Step 3.7.2
Cancel the common factors.
Step 3.7.2.1
Factor out of .
Step 3.7.2.2
Cancel the common factor.
Step 3.7.2.3
Rewrite the expression.
Step 3.7.2.4
Divide by .
Step 4
Step 4.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.2
Differentiate using the Power Rule which states that is where .
Step 4.3
Multiply by .
Step 5
Step 5.1
Since is constant with respect to , the derivative of with respect to is .
Step 5.2
Add and .