Enter a problem...
Calculus Examples
Step 1
Step 1.1
To apply the Chain Rule, set as .
Step 1.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.3
Replace all occurrences of with .
Step 2
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
The derivative of with respect to is .
Step 2.3
Replace all occurrences of with .
Step 3
Step 3.1
Combine and .
Step 3.2
Cancel the common factor of and .
Step 3.2.1
Factor out of .
Step 3.2.2
Cancel the common factors.
Step 3.2.2.1
Factor out of .
Step 3.2.2.2
Cancel the common factor.
Step 3.2.2.3
Rewrite the expression.
Step 4
Step 4.1
To apply the Chain Rule, set as .
Step 4.2
Differentiate using the Exponential Rule which states that is where =.
Step 4.3
Replace all occurrences of with .
Step 5
Combine and .
Step 6
Step 6.1
Use the power rule to combine exponents.
Step 6.2
Combine the opposite terms in .
Step 6.2.1
Subtract from .
Step 6.2.2
Add and .
Step 7
Since is constant with respect to , the derivative of with respect to is .
Step 8
Combine and .
Step 9
Differentiate using the Power Rule which states that is where .
Step 10
Multiply by .