Enter a problem...
Calculus Examples
Step 1
Differentiate using the Quotient Rule which states that is where and .
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Differentiate using the Power Rule which states that is where .
Step 2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4
Simplify the expression.
Step 2.4.1
Add and .
Step 2.4.2
Multiply by .
Step 2.5
By the Sum Rule, the derivative of with respect to is .
Step 2.6
Differentiate using the Power Rule which states that is where .
Step 2.7
Since is constant with respect to , the derivative of with respect to is .
Step 2.8
Differentiate using the Power Rule which states that is where .
Step 2.9
Multiply by .
Step 2.10
Since is constant with respect to , the derivative of with respect to is .
Step 2.11
Add and .
Step 3
Step 3.1
Apply the distributive property.
Step 3.2
Simplify the numerator.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply by .
Step 3.2.1.2
Expand using the FOIL Method.
Step 3.2.1.2.1
Apply the distributive property.
Step 3.2.1.2.2
Apply the distributive property.
Step 3.2.1.2.3
Apply the distributive property.
Step 3.2.1.3
Simplify and combine like terms.
Step 3.2.1.3.1
Simplify each term.
Step 3.2.1.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.2.1.3.1.2
Multiply by by adding the exponents.
Step 3.2.1.3.1.2.1
Move .
Step 3.2.1.3.1.2.2
Multiply by .
Step 3.2.1.3.1.3
Multiply by .
Step 3.2.1.3.1.4
Multiply by .
Step 3.2.1.3.1.5
Multiply by .
Step 3.2.1.3.1.6
Multiply by .
Step 3.2.1.3.2
Add and .
Step 3.2.1.3.3
Add and .
Step 3.2.2
Subtract from .
Step 3.2.3
Add and .
Step 3.3
Factor by grouping.
Step 3.3.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 3.3.1.1
Factor out of .
Step 3.3.1.2
Rewrite as plus
Step 3.3.1.3
Apply the distributive property.
Step 3.3.2
Factor out the greatest common factor from each group.
Step 3.3.2.1
Group the first two terms and the last two terms.
Step 3.3.2.2
Factor out the greatest common factor (GCF) from each group.
Step 3.3.3
Factor the polynomial by factoring out the greatest common factor, .
Step 3.4
Simplify the denominator.
Step 3.4.1
Factor using the perfect square rule.
Step 3.4.1.1
Rewrite as .
Step 3.4.1.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 3.4.1.3
Rewrite the polynomial.
Step 3.4.1.4
Factor using the perfect square trinomial rule , where and .
Step 3.4.2
Multiply the exponents in .
Step 3.4.2.1
Apply the power rule and multiply exponents, .
Step 3.4.2.2
Multiply by .
Step 3.4.3
Use the Binomial Theorem.
Step 3.4.4
Simplify each term.
Step 3.4.4.1
Multiply by .
Step 3.4.4.2
Raise to the power of .
Step 3.4.4.3
Multiply by .
Step 3.4.4.4
Raise to the power of .
Step 3.4.4.5
Multiply by .
Step 3.4.4.6
Raise to the power of .
Step 3.4.5
Make each term match the terms from the binomial theorem formula.
Step 3.4.6
Factor using the binomial theorem.
Step 3.5
Cancel the common factor of and .
Step 3.5.1
Factor out of .
Step 3.5.2
Rewrite as .
Step 3.5.3
Factor out of .
Step 3.5.4
Rewrite as .
Step 3.5.5
Factor out of .
Step 3.5.6
Cancel the common factors.
Step 3.5.6.1
Factor out of .
Step 3.5.6.2
Cancel the common factor.
Step 3.5.6.3
Rewrite the expression.
Step 3.6
Move the negative in front of the fraction.