Enter a problem...
Calculus Examples
(1-x2)-12sin((1-x2)12)√1-cos2((1-x2)12)(1−x2)−12sin((1−x2)12)√1−cos2((1−x2)12)
Step 1
Apply pythagorean identity.
(1-x2)-12sin((1-x2)12)√sin2((1-x2)12)(1−x2)−12sin((1−x2)12)√sin2((1−x2)12)
Step 2
Move (1-x2)-12(1−x2)−12 to the denominator using the negative exponent rule b-n=1bnb−n=1bn.
sin((1-x2)12)√sin2((1-x2)12)(1-x2)12sin((1−x2)12)√sin2((1−x2)12)(1−x2)12
Step 3
Pull terms out from under the radical, assuming positive real numbers.
sin((1-x2)12)sin((1-x2)12)(1-x2)12sin((1−x2)12)sin((1−x2)12)(1−x2)12
Step 4
Cancel the common factor.
sin((1-x2)12)sin((1-x2)12)(1-x2)12
Step 5
Rewrite the expression.
1(1-x2)12