Calculus Examples

Solve for x 0.01x^2+x-600>0
Step 1
Convert the inequality to an equation.
Step 2
Use the quadratic formula to find the solutions.
Step 3
Substitute the values , , and into the quadratic formula and solve for .
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
One to any power is one.
Step 4.1.2
Multiply .
Tap for more steps...
Step 4.1.2.1
Multiply by .
Step 4.1.2.2
Multiply by .
Step 4.1.3
Add and .
Step 4.1.4
Rewrite as .
Step 4.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 4.2
Multiply by .
Step 4.3
Simplify .
Step 5
Consolidate the solutions.
Step 6
Use each root to create test intervals.
Step 7
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 7.1
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 7.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 7.1.2
Replace with in the original inequality.
Step 7.1.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 7.2
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 7.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 7.2.2
Replace with in the original inequality.
Step 7.2.3
The left side is not greater than the right side , which means that the given statement is false.
False
False
Step 7.3
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 7.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 7.3.2
Replace with in the original inequality.
Step 7.3.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 7.4
Compare the intervals to determine which ones satisfy the original inequality.
True
False
True
True
False
True
Step 8
The solution consists of all of the true intervals.
or
Step 9
The result can be shown in multiple forms.
Inequality Form:
Interval Notation:
Step 10