Calculus Examples

Divide (x^5-x^4+x^3+2x^2-x+4)/(x^3+1)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+++-++-+
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
+++-++-+
Step 3
Multiply the new quotient term by the divisor.
+++-++-+
++++
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
+++-++-+
----
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+++-++-+
----
-++
Step 6
Pull the next terms from the original dividend down into the current dividend.
+++-++-+
----
-++-
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
-
+++-++-+
----
-++-
Step 8
Multiply the new quotient term by the divisor.
-
+++-++-+
----
-++-
-++-
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
-
+++-++-+
----
-++-
+--+
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
+++-++-+
----
-++-
+--+
+++
Step 11
Pull the next term from the original dividend down into the current dividend.
-
+++-++-+
----
-++-
+--+
++++
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
-+
+++-++-+
----
-++-
+--+
++++
Step 13
Multiply the new quotient term by the divisor.
-+
+++-++-+
----
-++-
+--+
++++
++++
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
-+
+++-++-+
----
-++-
+--+
++++
----
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
+++-++-+
----
-++-
+--+
++++
----
+++
Step 16
The final answer is the quotient plus the remainder over the divisor.