Enter a problem...
Calculus Examples
Step 1
By the Sum Rule, the derivative of with respect to is .
Step 2
Step 2.1
Differentiate using the Product Rule which states that is where and .
Step 2.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4
Differentiate using the Power Rule which states that is where .
Step 2.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.6
By the Sum Rule, the derivative of with respect to is .
Step 2.7
Since is constant with respect to , the derivative of with respect to is .
Step 2.8
Differentiate using the Power Rule which states that is where .
Step 2.9
Since is constant with respect to , the derivative of with respect to is .
Step 2.10
Multiply by .
Step 2.11
Add and .
Step 2.12
Move to the left of .
Step 2.13
Multiply by .
Step 2.14
Add and .
Step 2.15
Move to the left of .
Step 3
Since is constant with respect to , the derivative of with respect to is .
Step 4
Step 4.1
Apply the distributive property.
Step 4.2
Apply the distributive property.
Step 4.3
Combine terms.
Step 4.3.1
Multiply by .
Step 4.3.2
Multiply by .
Step 4.3.3
Multiply by .
Step 4.3.4
Multiply by .
Step 4.3.5
Add and .
Step 4.3.6
Add and .
Step 4.3.7
Add and .