Enter a problem...
Calculus Examples
Step 1
This derivative could not be completed using the product rule. Mathway will use another method.
Step 2
By the Sum Rule, the derivative of with respect to is .
Step 3
Step 3.1
Use to rewrite as .
Step 3.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.3
Rewrite as .
Step 3.4
Differentiate using the chain rule, which states that is where and .
Step 3.4.1
To apply the Chain Rule, set as .
Step 3.4.2
Differentiate using the Power Rule which states that is where .
Step 3.4.3
Replace all occurrences of with .
Step 3.5
Differentiate using the Power Rule which states that is where .
Step 3.6
Multiply the exponents in .
Step 3.6.1
Apply the power rule and multiply exponents, .
Step 3.6.2
Cancel the common factor of .
Step 3.6.2.1
Factor out of .
Step 3.6.2.2
Cancel the common factor.
Step 3.6.2.3
Rewrite the expression.
Step 3.7
To write as a fraction with a common denominator, multiply by .
Step 3.8
Combine and .
Step 3.9
Combine the numerators over the common denominator.
Step 3.10
Simplify the numerator.
Step 3.10.1
Multiply by .
Step 3.10.2
Subtract from .
Step 3.11
Move the negative in front of the fraction.
Step 3.12
Combine and .
Step 3.13
Combine and .
Step 3.14
Multiply by by adding the exponents.
Step 3.14.1
Use the power rule to combine exponents.
Step 3.14.2
To write as a fraction with a common denominator, multiply by .
Step 3.14.3
Combine and .
Step 3.14.4
Combine the numerators over the common denominator.
Step 3.14.5
Simplify the numerator.
Step 3.14.5.1
Multiply by .
Step 3.14.5.2
Subtract from .
Step 3.14.6
Move the negative in front of the fraction.
Step 3.15
Move to the denominator using the negative exponent rule .
Step 3.16
Multiply by .
Step 3.17
Combine and .
Step 3.18
Move the negative in front of the fraction.
Step 4
Step 4.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.2
Differentiate using the Power Rule which states that is where .
Step 4.3
Multiply by .
Step 5
Step 5.1
Since is constant with respect to , the derivative of with respect to is .
Step 5.2
Differentiate using the Power Rule which states that is where .
Step 5.3
Multiply by .
Step 6
Step 6.1
Reorder terms.
Step 6.2
Simplify each term.
Step 6.2.1
Rewrite the expression using the negative exponent rule .
Step 6.2.2
Combine and .
Step 6.2.3
Factor out of .
Step 6.2.4
Factor out of .
Step 6.2.5
Separate fractions.
Step 6.2.6
Divide by .
Step 6.2.7
Combine and .