Enter a problem...
Calculus Examples
Step 1
Write as an equation.
Step 2
Step 2.1
To find the x-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Step 2.2.1
Rewrite the equation as .
Step 2.2.2
Factor out of .
Step 2.2.2.1
Factor out of .
Step 2.2.2.2
Factor out of .
Step 2.2.2.3
Factor out of .
Step 2.2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.2.4
Set equal to and solve for .
Step 2.2.4.1
Set equal to .
Step 2.2.4.2
Solve for .
Step 2.2.4.2.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.2.4.2.2
Simplify the exponent.
Step 2.2.4.2.2.1
Simplify the left side.
Step 2.2.4.2.2.1.1
Simplify .
Step 2.2.4.2.2.1.1.1
Multiply the exponents in .
Step 2.2.4.2.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 2.2.4.2.2.1.1.1.2
Cancel the common factor of .
Step 2.2.4.2.2.1.1.1.2.1
Cancel the common factor.
Step 2.2.4.2.2.1.1.1.2.2
Rewrite the expression.
Step 2.2.4.2.2.1.1.1.3
Cancel the common factor of .
Step 2.2.4.2.2.1.1.1.3.1
Cancel the common factor.
Step 2.2.4.2.2.1.1.1.3.2
Rewrite the expression.
Step 2.2.4.2.2.1.1.2
Simplify.
Step 2.2.4.2.2.2
Simplify the right side.
Step 2.2.4.2.2.2.1
Simplify .
Step 2.2.4.2.2.2.1.1
Simplify the expression.
Step 2.2.4.2.2.2.1.1.1
Rewrite as .
Step 2.2.4.2.2.2.1.1.2
Apply the power rule and multiply exponents, .
Step 2.2.4.2.2.2.1.2
Cancel the common factor of .
Step 2.2.4.2.2.2.1.2.1
Cancel the common factor.
Step 2.2.4.2.2.2.1.2.2
Rewrite the expression.
Step 2.2.4.2.2.2.1.3
Raising to any positive power yields .
Step 2.2.4.2.2.2.1.4
Plus or minus is .
Step 2.2.5
Set equal to and solve for .
Step 2.2.5.1
Set equal to .
Step 2.2.5.2
Solve for .
Step 2.2.5.2.1
Subtract from both sides of the equation.
Step 2.2.5.2.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.2.5.2.3
Simplify the exponent.
Step 2.2.5.2.3.1
Simplify the left side.
Step 2.2.5.2.3.1.1
Simplify .
Step 2.2.5.2.3.1.1.1
Apply the product rule to .
Step 2.2.5.2.3.1.1.2
Raise to the power of .
Step 2.2.5.2.3.1.1.3
Multiply the exponents in .
Step 2.2.5.2.3.1.1.3.1
Apply the power rule and multiply exponents, .
Step 2.2.5.2.3.1.1.3.2
Cancel the common factor of .
Step 2.2.5.2.3.1.1.3.2.1
Cancel the common factor.
Step 2.2.5.2.3.1.1.3.2.2
Rewrite the expression.
Step 2.2.5.2.3.1.1.4
Simplify.
Step 2.2.5.2.3.2
Simplify the right side.
Step 2.2.5.2.3.2.1
Raise to the power of .
Step 2.2.5.2.4
Divide each term in by and simplify.
Step 2.2.5.2.4.1
Divide each term in by .
Step 2.2.5.2.4.2
Simplify the left side.
Step 2.2.5.2.4.2.1
Cancel the common factor of .
Step 2.2.5.2.4.2.1.1
Cancel the common factor.
Step 2.2.5.2.4.2.1.2
Divide by .
Step 2.2.5.2.4.3
Simplify the right side.
Step 2.2.5.2.4.3.1
Dividing two negative values results in a positive value.
Step 2.2.6
The final solution is all the values that make true.
Step 2.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 3
Step 3.1
To find the y-intercept(s), substitute in for and solve for .
Step 3.2
Solve the equation.
Step 3.2.1
Remove parentheses.
Step 3.2.2
Remove parentheses.
Step 3.2.3
Simplify .
Step 3.2.3.1
Simplify each term.
Step 3.2.3.1.1
Rewrite as .
Step 3.2.3.1.2
Apply the power rule and multiply exponents, .
Step 3.2.3.1.3
Cancel the common factor of .
Step 3.2.3.1.3.1
Cancel the common factor.
Step 3.2.3.1.3.2
Rewrite the expression.
Step 3.2.3.1.4
Raising to any positive power yields .
Step 3.2.3.1.5
Multiply by .
Step 3.2.3.1.6
Multiply by .
Step 3.2.3.2
Add and .
Step 3.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 4
List the intersections.
x-intercept(s):
y-intercept(s):
Step 5