Enter a problem...
Calculus Examples
Step 1
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Step 1.2.1
Rewrite the equation as .
Step 1.2.2
Substitute into the equation. This will make the quadratic formula easy to use.
Step 1.2.3
Use the quadratic formula to find the solutions.
Step 1.2.4
Substitute the values , , and into the quadratic formula and solve for .
Step 1.2.5
Simplify.
Step 1.2.5.1
Simplify the numerator.
Step 1.2.5.1.1
Raise to the power of .
Step 1.2.5.1.2
Multiply .
Step 1.2.5.1.2.1
Multiply by .
Step 1.2.5.1.2.2
Multiply by .
Step 1.2.5.1.3
Subtract from .
Step 1.2.5.1.4
Rewrite as .
Step 1.2.5.1.4.1
Factor out of .
Step 1.2.5.1.4.2
Rewrite as .
Step 1.2.5.1.5
Pull terms out from under the radical.
Step 1.2.5.2
Multiply by .
Step 1.2.5.3
Simplify .
Step 1.2.6
Simplify the expression to solve for the portion of the .
Step 1.2.6.1
Simplify the numerator.
Step 1.2.6.1.1
Raise to the power of .
Step 1.2.6.1.2
Multiply .
Step 1.2.6.1.2.1
Multiply by .
Step 1.2.6.1.2.2
Multiply by .
Step 1.2.6.1.3
Subtract from .
Step 1.2.6.1.4
Rewrite as .
Step 1.2.6.1.4.1
Factor out of .
Step 1.2.6.1.4.2
Rewrite as .
Step 1.2.6.1.5
Pull terms out from under the radical.
Step 1.2.6.2
Multiply by .
Step 1.2.6.3
Simplify .
Step 1.2.6.4
Change the to .
Step 1.2.7
Simplify the expression to solve for the portion of the .
Step 1.2.7.1
Simplify the numerator.
Step 1.2.7.1.1
Raise to the power of .
Step 1.2.7.1.2
Multiply .
Step 1.2.7.1.2.1
Multiply by .
Step 1.2.7.1.2.2
Multiply by .
Step 1.2.7.1.3
Subtract from .
Step 1.2.7.1.4
Rewrite as .
Step 1.2.7.1.4.1
Factor out of .
Step 1.2.7.1.4.2
Rewrite as .
Step 1.2.7.1.5
Pull terms out from under the radical.
Step 1.2.7.2
Multiply by .
Step 1.2.7.3
Simplify .
Step 1.2.7.4
Change the to .
Step 1.2.8
The final answer is the combination of both solutions.
Step 1.2.9
Substitute the real value of back into the solved equation.
Step 1.2.10
Solve the first equation for .
Step 1.2.11
Solve the equation for .
Step 1.2.11.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 1.2.11.2
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.11.2.1
First, use the positive value of the to find the first solution.
Step 1.2.11.2.2
Next, use the negative value of the to find the second solution.
Step 1.2.11.2.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.12
Solve the second equation for .
Step 1.2.13
Solve the equation for .
Step 1.2.13.1
Remove parentheses.
Step 1.2.13.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 1.2.13.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.13.3.1
First, use the positive value of the to find the first solution.
Step 1.2.13.3.2
Next, use the negative value of the to find the second solution.
Step 1.2.13.3.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.14
The solution to is .
Step 1.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 2
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Step 2.2.1
Remove parentheses.
Step 2.2.2
Remove parentheses.
Step 2.2.3
Remove parentheses.
Step 2.2.4
Simplify .
Step 2.2.4.1
Simplify each term.
Step 2.2.4.1.1
Raising to any positive power yields .
Step 2.2.4.1.2
Raising to any positive power yields .
Step 2.2.4.1.3
Multiply by .
Step 2.2.4.2
Simplify by adding numbers.
Step 2.2.4.2.1
Add and .
Step 2.2.4.2.2
Add and .
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s):
y-intercept(s):
Step 4