Calculus Examples

Find the Roots (Zeros) 1+ natural log of x=0
1+ln(x)=01+ln(x)=0
Step 1
Subtract 11 from both sides of the equation.
ln(x)=-1ln(x)=1
Step 2
To solve for xx, rewrite the equation using properties of logarithms.
eln(x)=e-1eln(x)=e1
Step 3
Rewrite ln(x)=-1ln(x)=1 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b1b1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
e-1=xe1=x
Step 4
Solve for xx.
Tap for more steps...
Step 4.1
Rewrite the equation as x=e-1x=e1.
x=e-1x=e1
Step 4.2
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
x=1ex=1e
x=1ex=1e
Step 5
 [x2  12  π  xdx ]  x2  12  π  xdx