Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Since is constant with respect to , the derivative of with respect to is .
Step 3
Step 3.1
Differentiate.
Step 3.1.1
By the Sum Rule, the derivative of with respect to is .
Step 3.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Evaluate .
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Multiply by .
Step 3.3
Evaluate .
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Multiply by .
Step 3.4
Simplify.
Step 3.4.1
Add and .
Step 3.4.2
Reorder terms.
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 5.2
Subtract from both sides of the equation.
Step 5.3
Divide each term in by and simplify.
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Step 5.3.2.1
Cancel the common factor of .
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Divide by .
Step 5.3.3
Simplify the right side.
Step 5.3.3.1
Divide by .
Step 6
Replace with .