Calculus Examples

Find ds/dt s=t^2+9/(t^2)
Step 1
Differentiate both sides of the equation.
Step 2
The derivative of with respect to is .
Step 3
Differentiate the right side of the equation.
Tap for more steps...
Step 3.1
Differentiate.
Tap for more steps...
Step 3.1.1
By the Sum Rule, the derivative of with respect to is .
Step 3.1.2
Differentiate using the Power Rule which states that is where .
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Rewrite as .
Step 3.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.2.3.1
To apply the Chain Rule, set as .
Step 3.2.3.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3.3
Replace all occurrences of with .
Step 3.2.4
Differentiate using the Power Rule which states that is where .
Step 3.2.5
Multiply the exponents in .
Tap for more steps...
Step 3.2.5.1
Apply the power rule and multiply exponents, .
Step 3.2.5.2
Multiply by .
Step 3.2.6
Multiply by .
Step 3.2.7
Raise to the power of .
Step 3.2.8
Use the power rule to combine exponents.
Step 3.2.9
Subtract from .
Step 3.2.10
Multiply by .
Step 3.3
Simplify.
Tap for more steps...
Step 3.3.1
Rewrite the expression using the negative exponent rule .
Step 3.3.2
Combine terms.
Tap for more steps...
Step 3.3.2.1
Combine and .
Step 3.3.2.2
Move the negative in front of the fraction.
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Replace with .