Calculus Examples

Find Where Increasing/Decreasing Using Derivatives f(x) = square root of x^2+9
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Use to rewrite as .
Step 1.1.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.1.2.1
To apply the Chain Rule, set as .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Replace all occurrences of with .
Step 1.1.3
To write as a fraction with a common denominator, multiply by .
Step 1.1.4
Combine and .
Step 1.1.5
Combine the numerators over the common denominator.
Step 1.1.6
Simplify the numerator.
Tap for more steps...
Step 1.1.6.1
Multiply by .
Step 1.1.6.2
Subtract from .
Step 1.1.7
Combine fractions.
Tap for more steps...
Step 1.1.7.1
Move the negative in front of the fraction.
Step 1.1.7.2
Combine and .
Step 1.1.7.3
Move to the denominator using the negative exponent rule .
Step 1.1.8
By the Sum Rule, the derivative of with respect to is .
Step 1.1.9
Differentiate using the Power Rule which states that is where .
Step 1.1.10
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.11
Simplify terms.
Tap for more steps...
Step 1.1.11.1
Add and .
Step 1.1.11.2
Combine and .
Step 1.1.11.3
Combine and .
Step 1.1.11.4
Cancel the common factor.
Step 1.1.11.5
Rewrite the expression.
Step 1.2
The first derivative of with respect to is .
Step 2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the first derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 3
The values which make the derivative equal to are .
Step 4
After finding the point that makes the derivative equal to or undefined, the interval to check where is increasing and where it is decreasing is .
Step 5
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Simplify the denominator.
Tap for more steps...
Step 5.2.1.1
Raise to the power of .
Step 5.2.1.2
Add and .
Step 5.2.2
Move the negative in front of the fraction.
Step 5.2.3
The final answer is .
Step 5.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 6
Substitute a value from the interval into the derivative to determine if the function is increasing or decreasing.
Tap for more steps...
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Simplify the denominator.
Tap for more steps...
Step 6.2.1.1
One to any power is one.
Step 6.2.1.2
Add and .
Step 6.2.2
The final answer is .
Step 6.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 7
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 8