Calculus Examples

Find the Derivative Using Chain Rule - d/dX (3x^3+1)(4x^3*(2x))^6
(3x3+1)(4x3(2x))6(3x3+1)(4x3(2x))6
Step 1
This derivative could not be completed using the chain rule. Mathway will use another method.
Step 2
Rewrite using the commutative property of multiplication.
ddX[(3x3+1)(42x3x)6]ddX[(3x3+1)(42x3x)6]
Step 3
Multiply x3x3 by xx by adding the exponents.
Tap for more steps...
Step 3.1
Move xx.
ddX[(3x3+1)(42(xx3))6]ddX[(3x3+1)(42(xx3))6]
Step 3.2
Multiply xx by x3x3.
Tap for more steps...
Step 3.2.1
Raise xx to the power of 11.
ddX[(3x3+1)(42(x1x3))6]ddX[(3x3+1)(42(x1x3))6]
Step 3.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
ddX[(3x3+1)(42x1+3)6]ddX[(3x3+1)(42x1+3)6]
ddX[(3x3+1)(42x1+3)6]
Step 3.3
Add 1 and 3.
ddX[(3x3+1)(42x4)6]
ddX[(3x3+1)(42x4)6]
Step 4
Simplify the expression.
Tap for more steps...
Step 4.1
Multiply 4 by 2.
ddX[(3x3+1)(8x4)6]
Step 4.2
Apply the product rule to 8x4.
ddX[(3x3+1)(86(x4)6)]
Step 4.3
Raise 8 to the power of 6.
ddX[(3x3+1)(262144(x4)6)]
Step 4.4
Multiply the exponents in (x4)6.
Tap for more steps...
Step 4.4.1
Apply the power rule and multiply exponents, (am)n=amn.
ddX[(3x3+1)(262144x46)]
Step 4.4.2
Multiply 4 by 6.
ddX[(3x3+1)(262144x24)]
ddX[(3x3+1)(262144x24)]
Step 4.5
Move 262144 to the left of 3x3+1.
ddX[262144(3x3+1)x24]
ddX[262144(3x3+1)x24]
Step 5
Since 262144(3x3+1)x24 is constant with respect to X, the derivative of 262144(3x3+1)x24 with respect to X is 0.
0
 [x2  12  π  xdx ]