Calculus Examples

Find the Derivative - d/dy 3/(y-3)
Step 1
Differentiate using the Constant Multiple Rule.
Tap for more steps...
Step 1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Rewrite as .
Step 2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
Differentiate using the Power Rule which states that is where .
Step 2.3
Replace all occurrences of with .
Step 3
Differentiate.
Tap for more steps...
Step 3.1
Multiply by .
Step 3.2
By the Sum Rule, the derivative of with respect to is .
Step 3.3
Differentiate using the Power Rule which states that is where .
Step 3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.5
Simplify the expression.
Tap for more steps...
Step 3.5.1
Add and .
Step 3.5.2
Multiply by .
Step 4
Simplify.
Tap for more steps...
Step 4.1
Rewrite the expression using the negative exponent rule .
Step 4.2
Combine terms.
Tap for more steps...
Step 4.2.1
Combine and .
Step 4.2.2
Move the negative in front of the fraction.