Enter a problem...
Calculus Examples
Step 1
By the Sum Rule, the derivative of with respect to is .
Step 2
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
The derivative of with respect to is .
Step 3
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Differentiate using the chain rule, which states that is where and .
Step 3.2.1
To apply the Chain Rule, set as .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Replace all occurrences of with .
Step 3.3
The derivative of with respect to is .
Step 3.4
Multiply by .
Step 3.5
Multiply by .
Step 4
Step 4.1
Reorder terms.
Step 4.2
Simplify each term.
Step 4.2.1
Reorder and .
Step 4.2.2
Reorder and .
Step 4.2.3
Apply the sine double-angle identity.