Calculus Examples

Find the Derivative - d/dx y=(sin(h(2x)))/(cos(h(2x))-5)
Step 1
Differentiate using the Quotient Rule which states that is where and .
Step 2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
The derivative of with respect to is .
Step 2.3
Replace all occurrences of with .
Step 3
Differentiate.
Tap for more steps...
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Differentiate using the Power Rule which states that is where .
Step 3.3
Simplify the expression.
Tap for more steps...
Step 3.3.1
Multiply by .
Step 3.3.2
Move to the left of .
Step 3.4
By the Sum Rule, the derivative of with respect to is .
Step 4
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.1
To apply the Chain Rule, set as .
Step 4.2
The derivative of with respect to is .
Step 4.3
Replace all occurrences of with .
Step 5
Differentiate.
Tap for more steps...
Step 5.1
Since is constant with respect to , the derivative of with respect to is .
Step 5.2
Differentiate using the Power Rule which states that is where .
Step 5.3
Simplify the expression.
Tap for more steps...
Step 5.3.1
Multiply by .
Step 5.3.2
Move to the left of .
Step 5.4
Since is constant with respect to , the derivative of with respect to is .
Step 5.5
Simplify the expression.
Tap for more steps...
Step 5.5.1
Add and .
Step 5.5.2
Multiply by .
Step 6
Raise to the power of .
Step 7
Raise to the power of .
Step 8
Use the power rule to combine exponents.
Step 9
Add and .
Step 10
Simplify.
Tap for more steps...
Step 10.1
Apply the distributive property.
Step 10.2
Apply the distributive property.
Step 10.3
Simplify each term.
Tap for more steps...
Step 10.3.1
Multiply .
Tap for more steps...
Step 10.3.1.1
Raise to the power of .
Step 10.3.1.2
Raise to the power of .
Step 10.3.1.3
Use the power rule to combine exponents.
Step 10.3.1.4
Add and .
Step 10.3.2
Multiply by .
Step 10.4
Reorder terms.