Enter a problem...
Calculus Examples
y=xsin(x)1+cos(x)y=xsin(x)1+cos(x)
Step 1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=xsin(x) and g(x)=1+cos(x).
(1+cos(x))ddx[xsin(x)]-xsin(x)ddx[1+cos(x)](1+cos(x))2
Step 2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=sin(x).
(1+cos(x))(xddx[sin(x)]+sin(x)ddx[x])-xsin(x)ddx[1+cos(x)](1+cos(x))2
Step 3
The derivative of sin(x) with respect to x is cos(x).
(1+cos(x))(xcos(x)+sin(x)ddx[x])-xsin(x)ddx[1+cos(x)](1+cos(x))2
Step 4
Step 4.1
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
(1+cos(x))(xcos(x)+sin(x)⋅1)-xsin(x)ddx[1+cos(x)](1+cos(x))2
Step 4.2
Multiply sin(x) by 1.
(1+cos(x))(xcos(x)+sin(x))-xsin(x)ddx[1+cos(x)](1+cos(x))2
Step 4.3
By the Sum Rule, the derivative of 1+cos(x) with respect to x is ddx[1]+ddx[cos(x)].
(1+cos(x))(xcos(x)+sin(x))-xsin(x)(ddx[1]+ddx[cos(x)])(1+cos(x))2
Step 4.4
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
(1+cos(x))(xcos(x)+sin(x))-xsin(x)(0+ddx[cos(x)])(1+cos(x))2
Step 4.5
Add 0 and ddx[cos(x)].
(1+cos(x))(xcos(x)+sin(x))-xsin(x)ddx[cos(x)](1+cos(x))2
(1+cos(x))(xcos(x)+sin(x))-xsin(x)ddx[cos(x)](1+cos(x))2
Step 5
The derivative of cos(x) with respect to x is -sin(x).
(1+cos(x))(xcos(x)+sin(x))-xsin(x)(-sin(x))(1+cos(x))2
Step 6
Step 6.1
Multiply -1 by -1.
(1+cos(x))(xcos(x)+sin(x))+1xsin(x)sin(x)(1+cos(x))2
Step 6.2
Multiply x by 1.
(1+cos(x))(xcos(x)+sin(x))+xsin(x)sin(x)(1+cos(x))2
(1+cos(x))(xcos(x)+sin(x))+xsin(x)sin(x)(1+cos(x))2
Step 7
Raise sin(x) to the power of 1.
(1+cos(x))(xcos(x)+sin(x))+x(sin1(x)sin(x))(1+cos(x))2
Step 8
Raise sin(x) to the power of 1.
(1+cos(x))(xcos(x)+sin(x))+x(sin1(x)sin1(x))(1+cos(x))2
Step 9
Use the power rule aman=am+n to combine exponents.
(1+cos(x))(xcos(x)+sin(x))+xsin(x)1+1(1+cos(x))2
Step 10
Add 1 and 1.
(1+cos(x))(xcos(x)+sin(x))+xsin2(x)(1+cos(x))2
Step 11
Step 11.1
Simplify the numerator.
Step 11.1.1
Simplify each term.
Step 11.1.1.1
Expand (1+cos(x))(xcos(x)+sin(x)) using the FOIL Method.
Step 11.1.1.1.1
Apply the distributive property.
1(xcos(x)+sin(x))+cos(x)(xcos(x)+sin(x))+xsin2(x)(1+cos(x))2
Step 11.1.1.1.2
Apply the distributive property.
1(xcos(x))+1sin(x)+cos(x)(xcos(x)+sin(x))+xsin2(x)(1+cos(x))2
Step 11.1.1.1.3
Apply the distributive property.
1(xcos(x))+1sin(x)+cos(x)(xcos(x))+cos(x)sin(x)+xsin2(x)(1+cos(x))2
1(xcos(x))+1sin(x)+cos(x)(xcos(x))+cos(x)sin(x)+xsin2(x)(1+cos(x))2
Step 11.1.1.2
Simplify each term.
Step 11.1.1.2.1
Multiply xcos(x) by 1.
xcos(x)+1sin(x)+cos(x)(xcos(x))+cos(x)sin(x)+xsin2(x)(1+cos(x))2
Step 11.1.1.2.2
Multiply sin(x) by 1.
xcos(x)+sin(x)+cos(x)(xcos(x))+cos(x)sin(x)+xsin2(x)(1+cos(x))2
Step 11.1.1.2.3
Multiply cos(x)(xcos(x)).
Step 11.1.1.2.3.1
Raise cos(x) to the power of 1.
xcos(x)+sin(x)+x(cos1(x)cos(x))+cos(x)sin(x)+xsin2(x)(1+cos(x))2
Step 11.1.1.2.3.2
Raise cos(x) to the power of 1.
xcos(x)+sin(x)+x(cos1(x)cos1(x))+cos(x)sin(x)+xsin2(x)(1+cos(x))2
Step 11.1.1.2.3.3
Use the power rule aman=am+n to combine exponents.
xcos(x)+sin(x)+xcos(x)1+1+cos(x)sin(x)+xsin2(x)(1+cos(x))2
Step 11.1.1.2.3.4
Add 1 and 1.
xcos(x)+sin(x)+xcos2(x)+cos(x)sin(x)+xsin2(x)(1+cos(x))2
xcos(x)+sin(x)+xcos2(x)+cos(x)sin(x)+xsin2(x)(1+cos(x))2
xcos(x)+sin(x)+xcos2(x)+cos(x)sin(x)+xsin2(x)(1+cos(x))2
xcos(x)+sin(x)+xcos2(x)+cos(x)sin(x)+xsin2(x)(1+cos(x))2
Step 11.1.2
Move xsin2(x).
xcos(x)+sin(x)+xcos2(x)+xsin2(x)+cos(x)sin(x)(1+cos(x))2
Step 11.1.3
Factor x out of xcos2(x).
xcos(x)+sin(x)+x(cos2(x))+xsin2(x)+cos(x)sin(x)(1+cos(x))2
Step 11.1.4
Factor x out of xsin2(x).
xcos(x)+sin(x)+x(cos2(x))+x(sin2(x))+cos(x)sin(x)(1+cos(x))2
Step 11.1.5
Factor x out of x(cos2(x))+x(sin2(x)).
xcos(x)+sin(x)+x(cos2(x)+sin2(x))+cos(x)sin(x)(1+cos(x))2
Step 11.1.6
Rearrange terms.
xcos(x)+sin(x)+x(sin2(x)+cos2(x))+cos(x)sin(x)(1+cos(x))2
Step 11.1.7
Apply pythagorean identity.
xcos(x)+sin(x)+x⋅1+cos(x)sin(x)(1+cos(x))2
Step 11.1.8
Multiply x by 1.
xcos(x)+sin(x)+x+cos(x)sin(x)(1+cos(x))2
xcos(x)+sin(x)+x+cos(x)sin(x)(1+cos(x))2
Step 11.2
Reorder terms.
xcos(x)+cos(x)sin(x)+x+sin(x)(1+cos(x))2
Step 11.3
Simplify the numerator.
Step 11.3.1
Factor out the greatest common factor from each group.
Step 11.3.1.1
Group the first two terms and the last two terms.
(xcos(x)+cos(x)sin(x))+x+sin(x)(1+cos(x))2
Step 11.3.1.2
Factor out the greatest common factor (GCF) from each group.
cos(x)(x+sin(x))+1(x+sin(x))(1+cos(x))2
cos(x)(x+sin(x))+1(x+sin(x))(1+cos(x))2
Step 11.3.2
Factor the polynomial by factoring out the greatest common factor, x+sin(x).
(x+sin(x))(cos(x)+1)(1+cos(x))2
(x+sin(x))(cos(x)+1)(1+cos(x))2
Step 11.4
Cancel the common factor of cos(x)+1 and (1+cos(x))2.
Step 11.4.1
Reorder terms.
(x+sin(x))(1+cos(x))(1+cos(x))2
Step 11.4.2
Factor 1+cos(x) out of (x+sin(x))(1+cos(x)).
(1+cos(x))(x+sin(x))(1+cos(x))2
Step 11.4.3
Cancel the common factors.
Step 11.4.3.1
Factor 1+cos(x) out of (1+cos(x))2.
(1+cos(x))(x+sin(x))(1+cos(x))(1+cos(x))
Step 11.4.3.2
Cancel the common factor.
(1+cos(x))(x+sin(x))(1+cos(x))(1+cos(x))
Step 11.4.3.3
Rewrite the expression.
x+sin(x)1+cos(x)
x+sin(x)1+cos(x)
x+sin(x)1+cos(x)
x+sin(x)1+cos(x)