Enter a problem...
Calculus Examples
Step 1
Since is constant with respect to , the derivative of with respect to is .
Step 2
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
The derivative of with respect to is .
Step 2.3
Replace all occurrences of with .
Step 3
Step 3.1
Combine and .
Step 3.2
By the Sum Rule, the derivative of with respect to is .
Step 3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Add and .
Step 3.5
Differentiate using the Power Rule which states that is where .
Step 3.6
Combine fractions.
Step 3.6.1
Combine and .
Step 3.6.2
Multiply by .
Step 3.6.3
Combine and .
Step 3.6.4
Reorder terms.