Calculus Examples

Find the Derivative - d/dx f(x) = log base 3 of square root of x-1
Step 1
Use to rewrite as .
Step 2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
The derivative of with respect to is .
Step 2.3
Replace all occurrences of with .
Step 3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.1
To apply the Chain Rule, set as .
Step 3.2
Differentiate using the Power Rule which states that is where .
Step 3.3
Replace all occurrences of with .
Step 4
To write as a fraction with a common denominator, multiply by .
Step 5
Combine and .
Step 6
Combine the numerators over the common denominator.
Step 7
Simplify the numerator.
Tap for more steps...
Step 7.1
Multiply by .
Step 7.2
Subtract from .
Step 8
Move the negative in front of the fraction.
Step 9
Combine and .
Step 10
Move to the denominator using the negative exponent rule .
Step 11
Multiply by .
Step 12
Use the power rule to combine exponents.
Step 13
Simplify the expression.
Tap for more steps...
Step 13.1
Combine the numerators over the common denominator.
Step 13.2
Add and .
Step 14
Cancel the common factor of .
Tap for more steps...
Step 14.1
Cancel the common factor.
Step 14.2
Rewrite the expression.
Step 15
Simplify.
Step 16
By the Sum Rule, the derivative of with respect to is .
Step 17
Differentiate using the Power Rule which states that is where .
Step 18
Since is constant with respect to , the derivative of with respect to is .
Step 19
Simplify the expression.
Tap for more steps...
Step 19.1
Add and .
Step 19.2
Multiply by .
Step 20
Simplify.
Tap for more steps...
Step 20.1
Apply the distributive property.
Step 20.2
Apply the distributive property.
Step 20.3
Multiply by .