Calculus Examples

Find the Derivative - d/dx f(x)=x^(x^4)
Step 1
Use the properties of logarithms to simplify the differentiation.
Tap for more steps...
Step 1.1
Rewrite as .
Step 1.2
Expand by moving outside the logarithm.
Step 2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.3
Replace all occurrences of with .
Step 3
Differentiate using the Product Rule which states that is where and .
Step 4
The derivative of with respect to is .
Step 5
Differentiate using the Power Rule.
Tap for more steps...
Step 5.1
Combine and .
Step 5.2
Cancel the common factor of and .
Tap for more steps...
Step 5.2.1
Factor out of .
Step 5.2.2
Cancel the common factors.
Tap for more steps...
Step 5.2.2.1
Raise to the power of .
Step 5.2.2.2
Factor out of .
Step 5.2.2.3
Cancel the common factor.
Step 5.2.2.4
Rewrite the expression.
Step 5.2.2.5
Divide by .
Step 5.3
Differentiate using the Power Rule which states that is where .
Step 6
Simplify.
Tap for more steps...
Step 6.1
Apply the distributive property.
Step 6.2
Reorder terms.