Enter a problem...
Calculus Examples
f(x)=3e2x+1f(x)=3e2x+1
Step 1
Write f(x)=3e2x+1 as an equation.
y=3e2x+1
Step 2
Interchange the variables.
x=3e2y+1
Step 3
Step 3.1
Rewrite the equation as 3e2y+1=x.
3e2y+1=x
Step 3.2
Subtract 1 from both sides of the equation.
3e2y=x-1
Step 3.3
Divide each term in 3e2y=x-1 by 3 and simplify.
Step 3.3.1
Divide each term in 3e2y=x-1 by 3.
3e2y3=x3+-13
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of 3.
Step 3.3.2.1.1
Cancel the common factor.
3e2y3=x3+-13
Step 3.3.2.1.2
Divide e2y by 1.
e2y=x3+-13
e2y=x3+-13
e2y=x3+-13
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Move the negative in front of the fraction.
e2y=x3-13
e2y=x3-13
e2y=x3-13
Step 3.4
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e2y)=ln(x3-13)
Step 3.5
Expand the left side.
Step 3.5.1
Expand ln(e2y) by moving 2y outside the logarithm.
2yln(e)=ln(x3-13)
Step 3.5.2
The natural logarithm of e is 1.
2y⋅1=ln(x3-13)
Step 3.5.3
Multiply 2 by 1.
2y=ln(x3-13)
2y=ln(x3-13)
Step 3.6
Divide each term in 2y=ln(x3-13) by 2 and simplify.
Step 3.6.1
Divide each term in 2y=ln(x3-13) by 2.
2y2=ln(x3-13)2
Step 3.6.2
Simplify the left side.
Step 3.6.2.1
Cancel the common factor of 2.
Step 3.6.2.1.1
Cancel the common factor.
2y2=ln(x3-13)2
Step 3.6.2.1.2
Divide y by 1.
y=ln(x3-13)2
y=ln(x3-13)2
y=ln(x3-13)2
y=ln(x3-13)2
y=ln(x3-13)2
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=ln(x3-13)2
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(3e2x+1) by substituting in the value of f into f-1.
f-1(3e2x+1)=ln(3e2x+13-13)2
Step 5.2.3
Rewrite ln(3e2x+13-13)2 as 12ln(13(3e2x+1)-13).
f-1(3e2x+1)=12⋅ln(13⋅(3e2x+1)-13)
Step 5.2.4
Simplify 12ln(13(3e2x+1)-13) by moving 12 inside the logarithm.
f-1(3e2x+1)=ln((13⋅(3e2x+1)-13)12)
Step 5.2.5
Simplify each term.
Step 5.2.5.1
Apply the distributive property.
f-1(3e2x+1)=ln((13⋅(3e2x)+13⋅1-13)12)
Step 5.2.5.2
Cancel the common factor of 3.
Step 5.2.5.2.1
Factor 3 out of 3e2x.
f-1(3e2x+1)=ln((13⋅(3(e2x))+13⋅1-13)12)
Step 5.2.5.2.2
Cancel the common factor.
f-1(3e2x+1)=ln((13⋅(3e2x)+13⋅1-13)12)
Step 5.2.5.2.3
Rewrite the expression.
f-1(3e2x+1)=ln((e2x+13⋅1-13)12)
f-1(3e2x+1)=ln((e2x+13⋅1-13)12)
Step 5.2.5.3
Multiply 13 by 1.
f-1(3e2x+1)=ln((e2x+13-13)12)
f-1(3e2x+1)=ln((e2x+13-13)12)
Step 5.2.6
Simplify by adding terms.
Step 5.2.6.1
Combine the opposite terms in e2x+13-13.
Step 5.2.6.1.1
Combine the numerators over the common denominator.
f-1(3e2x+1)=ln((e2x+1-13)12)
Step 5.2.6.1.2
Subtract 1 from 1.
f-1(3e2x+1)=ln((e2x+03)12)
Step 5.2.6.1.3
Divide 0 by 3.
f-1(3e2x+1)=ln((e2x+0)12)
Step 5.2.6.1.4
Add e2x and 0.
f-1(3e2x+1)=ln((e2x)12)
f-1(3e2x+1)=ln((e2x)12)
Step 5.2.6.2
Multiply the exponents in (e2x)12.
Step 5.2.6.2.1
Apply the power rule and multiply exponents, (am)n=amn.
f-1(3e2x+1)=ln(e2x(12))
Step 5.2.6.2.2
Cancel the common factor of 2.
Step 5.2.6.2.2.1
Factor 2 out of 2x.
f-1(3e2x+1)=ln(e2(x)(12))
Step 5.2.6.2.2.2
Cancel the common factor.
f-1(3e2x+1)=ln(e2x(12))
Step 5.2.6.2.2.3
Rewrite the expression.
f-1(3e2x+1)=ln(ex)
f-1(3e2x+1)=ln(ex)
f-1(3e2x+1)=ln(ex)
f-1(3e2x+1)=ln(ex)
Step 5.2.7
Use logarithm rules to move x out of the exponent.
f-1(3e2x+1)=xln(e)
Step 5.2.8
The natural logarithm of e is 1.
f-1(3e2x+1)=x⋅1
Step 5.2.9
Multiply x by 1.
f-1(3e2x+1)=x
f-1(3e2x+1)=x
Step 5.3
Evaluate f(f-1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(ln(x3-13)2) by substituting in the value of f-1 into f.
f(ln(x3-13)2)=3e2(ln(x3-13)2)+1
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Cancel the common factor of 2.
Step 5.3.3.1.1
Combine the numerators over the common denominator.
f(ln(x3-13)2)=3e2(ln(x-13)2)+1
Step 5.3.3.1.2
Cancel the common factor.
f(ln(x3-13)2)=3e2(ln(x-13)2)+1
Step 5.3.3.1.3
Rewrite the expression.
f(ln(x3-13)2)=3eln(x-13)+1
f(ln(x3-13)2)=3eln(x-13)+1
Step 5.3.3.2
Exponentiation and log are inverse functions.
f(ln(x3-13)2)=3(x-13)+1
Step 5.3.3.3
Cancel the common factor of 3.
Step 5.3.3.3.1
Cancel the common factor.
f(ln(x3-13)2)=3(x-13)+1
Step 5.3.3.3.2
Rewrite the expression.
f(ln(x3-13)2)=x-1+1
f(ln(x3-13)2)=x-1+1
f(ln(x3-13)2)=x-1+1
Step 5.3.4
Combine the opposite terms in x-1+1.
Step 5.3.4.1
Add -1 and 1.
f(ln(x3-13)2)=x+0
Step 5.3.4.2
Add x and 0.
f(ln(x3-13)2)=x
f(ln(x3-13)2)=x
f(ln(x3-13)2)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=ln(x3-13)2 is the inverse of f(x)=3e2x+1.
f-1(x)=ln(x3-13)2
f-1(x)=ln(x3-13)2