Calculus Examples

Find the Inverse f(x)=3e^(2x)+1
f(x)=3e2x+1f(x)=3e2x+1
Step 1
Write f(x)=3e2x+1 as an equation.
y=3e2x+1
Step 2
Interchange the variables.
x=3e2y+1
Step 3
Solve for y.
Tap for more steps...
Step 3.1
Rewrite the equation as 3e2y+1=x.
3e2y+1=x
Step 3.2
Subtract 1 from both sides of the equation.
3e2y=x-1
Step 3.3
Divide each term in 3e2y=x-1 by 3 and simplify.
Tap for more steps...
Step 3.3.1
Divide each term in 3e2y=x-1 by 3.
3e2y3=x3+-13
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of 3.
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
3e2y3=x3+-13
Step 3.3.2.1.2
Divide e2y by 1.
e2y=x3+-13
e2y=x3+-13
e2y=x3+-13
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Move the negative in front of the fraction.
e2y=x3-13
e2y=x3-13
e2y=x3-13
Step 3.4
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e2y)=ln(x3-13)
Step 3.5
Expand the left side.
Tap for more steps...
Step 3.5.1
Expand ln(e2y) by moving 2y outside the logarithm.
2yln(e)=ln(x3-13)
Step 3.5.2
The natural logarithm of e is 1.
2y1=ln(x3-13)
Step 3.5.3
Multiply 2 by 1.
2y=ln(x3-13)
2y=ln(x3-13)
Step 3.6
Divide each term in 2y=ln(x3-13) by 2 and simplify.
Tap for more steps...
Step 3.6.1
Divide each term in 2y=ln(x3-13) by 2.
2y2=ln(x3-13)2
Step 3.6.2
Simplify the left side.
Tap for more steps...
Step 3.6.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 3.6.2.1.1
Cancel the common factor.
2y2=ln(x3-13)2
Step 3.6.2.1.2
Divide y by 1.
y=ln(x3-13)2
y=ln(x3-13)2
y=ln(x3-13)2
y=ln(x3-13)2
y=ln(x3-13)2
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=ln(x3-13)2
Step 5
Verify if f-1(x)=ln(x3-13)2 is the inverse of f(x)=3e2x+1.
Tap for more steps...
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Tap for more steps...
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(3e2x+1) by substituting in the value of f into f-1.
f-1(3e2x+1)=ln(3e2x+13-13)2
Step 5.2.3
Rewrite ln(3e2x+13-13)2 as 12ln(13(3e2x+1)-13).
f-1(3e2x+1)=12ln(13(3e2x+1)-13)
Step 5.2.4
Simplify 12ln(13(3e2x+1)-13) by moving 12 inside the logarithm.
f-1(3e2x+1)=ln((13(3e2x+1)-13)12)
Step 5.2.5
Simplify each term.
Tap for more steps...
Step 5.2.5.1
Apply the distributive property.
f-1(3e2x+1)=ln((13(3e2x)+131-13)12)
Step 5.2.5.2
Cancel the common factor of 3.
Tap for more steps...
Step 5.2.5.2.1
Factor 3 out of 3e2x.
f-1(3e2x+1)=ln((13(3(e2x))+131-13)12)
Step 5.2.5.2.2
Cancel the common factor.
f-1(3e2x+1)=ln((13(3e2x)+131-13)12)
Step 5.2.5.2.3
Rewrite the expression.
f-1(3e2x+1)=ln((e2x+131-13)12)
f-1(3e2x+1)=ln((e2x+131-13)12)
Step 5.2.5.3
Multiply 13 by 1.
f-1(3e2x+1)=ln((e2x+13-13)12)
f-1(3e2x+1)=ln((e2x+13-13)12)
Step 5.2.6
Simplify by adding terms.
Tap for more steps...
Step 5.2.6.1
Combine the opposite terms in e2x+13-13.
Tap for more steps...
Step 5.2.6.1.1
Combine the numerators over the common denominator.
f-1(3e2x+1)=ln((e2x+1-13)12)
Step 5.2.6.1.2
Subtract 1 from 1.
f-1(3e2x+1)=ln((e2x+03)12)
Step 5.2.6.1.3
Divide 0 by 3.
f-1(3e2x+1)=ln((e2x+0)12)
Step 5.2.6.1.4
Add e2x and 0.
f-1(3e2x+1)=ln((e2x)12)
f-1(3e2x+1)=ln((e2x)12)
Step 5.2.6.2
Multiply the exponents in (e2x)12.
Tap for more steps...
Step 5.2.6.2.1
Apply the power rule and multiply exponents, (am)n=amn.
f-1(3e2x+1)=ln(e2x(12))
Step 5.2.6.2.2
Cancel the common factor of 2.
Tap for more steps...
Step 5.2.6.2.2.1
Factor 2 out of 2x.
f-1(3e2x+1)=ln(e2(x)(12))
Step 5.2.6.2.2.2
Cancel the common factor.
f-1(3e2x+1)=ln(e2x(12))
Step 5.2.6.2.2.3
Rewrite the expression.
f-1(3e2x+1)=ln(ex)
f-1(3e2x+1)=ln(ex)
f-1(3e2x+1)=ln(ex)
f-1(3e2x+1)=ln(ex)
Step 5.2.7
Use logarithm rules to move x out of the exponent.
f-1(3e2x+1)=xln(e)
Step 5.2.8
The natural logarithm of e is 1.
f-1(3e2x+1)=x1
Step 5.2.9
Multiply x by 1.
f-1(3e2x+1)=x
f-1(3e2x+1)=x
Step 5.3
Evaluate f(f-1(x)).
Tap for more steps...
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(ln(x3-13)2) by substituting in the value of f-1 into f.
f(ln(x3-13)2)=3e2(ln(x3-13)2)+1
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.3.1.1
Combine the numerators over the common denominator.
f(ln(x3-13)2)=3e2(ln(x-13)2)+1
Step 5.3.3.1.2
Cancel the common factor.
f(ln(x3-13)2)=3e2(ln(x-13)2)+1
Step 5.3.3.1.3
Rewrite the expression.
f(ln(x3-13)2)=3eln(x-13)+1
f(ln(x3-13)2)=3eln(x-13)+1
Step 5.3.3.2
Exponentiation and log are inverse functions.
f(ln(x3-13)2)=3(x-13)+1
Step 5.3.3.3
Cancel the common factor of 3.
Tap for more steps...
Step 5.3.3.3.1
Cancel the common factor.
f(ln(x3-13)2)=3(x-13)+1
Step 5.3.3.3.2
Rewrite the expression.
f(ln(x3-13)2)=x-1+1
f(ln(x3-13)2)=x-1+1
f(ln(x3-13)2)=x-1+1
Step 5.3.4
Combine the opposite terms in x-1+1.
Tap for more steps...
Step 5.3.4.1
Add -1 and 1.
f(ln(x3-13)2)=x+0
Step 5.3.4.2
Add x and 0.
f(ln(x3-13)2)=x
f(ln(x3-13)2)=x
f(ln(x3-13)2)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=ln(x3-13)2 is the inverse of f(x)=3e2x+1.
f-1(x)=ln(x3-13)2
f-1(x)=ln(x3-13)2
 [x2  12  π  xdx ]