Enter a problem...
Calculus Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3.3
Simplify each side of the equation.
Step 3.3.1
Use to rewrite as .
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Multiply the exponents in .
Step 3.3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.3.2.1.1.2
Cancel the common factor of .
Step 3.3.2.1.1.2.1
Cancel the common factor.
Step 3.3.2.1.1.2.2
Rewrite the expression.
Step 3.3.2.1.2
Simplify.
Step 3.4
Solve for .
Step 3.4.1
Subtract from both sides of the equation.
Step 3.4.2
Divide each term in by and simplify.
Step 3.4.2.1
Divide each term in by .
Step 3.4.2.2
Simplify the left side.
Step 3.4.2.2.1
Cancel the common factor of .
Step 3.4.2.2.1.1
Cancel the common factor.
Step 3.4.2.2.1.2
Divide by .
Step 3.4.2.3
Simplify the right side.
Step 3.4.2.3.1
Simplify each term.
Step 3.4.2.3.1.1
Move the negative in front of the fraction.
Step 3.4.2.3.1.2
Divide by .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Simplify the numerator.
Step 5.2.3.1.1
Factor out of .
Step 5.2.3.1.1.1
Factor out of .
Step 5.2.3.1.1.2
Factor out of .
Step 5.2.3.1.1.3
Factor out of .
Step 5.2.3.1.2
Rewrite as .
Step 5.2.3.1.3
Pull terms out from under the radical.
Step 5.2.3.1.4
Apply the product rule to .
Step 5.2.3.1.5
Raise to the power of .
Step 5.2.3.1.6
Rewrite as .
Step 5.2.3.1.6.1
Use to rewrite as .
Step 5.2.3.1.6.2
Apply the power rule and multiply exponents, .
Step 5.2.3.1.6.3
Combine and .
Step 5.2.3.1.6.4
Cancel the common factor of .
Step 5.2.3.1.6.4.1
Cancel the common factor.
Step 5.2.3.1.6.4.2
Rewrite the expression.
Step 5.2.3.1.6.5
Simplify.
Step 5.2.3.1.7
Apply the distributive property.
Step 5.2.3.1.8
Multiply by .
Step 5.2.3.1.9
Multiply by .
Step 5.2.3.1.10
Factor out of .
Step 5.2.3.1.10.1
Factor out of .
Step 5.2.3.1.10.2
Factor out of .
Step 5.2.3.1.10.3
Factor out of .
Step 5.2.3.2
Cancel the common factor of .
Step 5.2.3.2.1
Cancel the common factor.
Step 5.2.3.2.2
Divide by .
Step 5.2.3.3
Apply the distributive property.
Step 5.2.3.4
Multiply by .
Step 5.2.3.5
Multiply .
Step 5.2.3.5.1
Multiply by .
Step 5.2.3.5.2
Multiply by .
Step 5.2.4
Combine the opposite terms in .
Step 5.2.4.1
Add and .
Step 5.2.4.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Factor out of .
Step 5.3.3.1
Factor out of .
Step 5.3.3.2
Factor out of .
Step 5.3.3.3
Factor out of .
Step 5.3.4
Apply the distributive property.
Step 5.3.5
Simplify the expression.
Step 5.3.5.1
Multiply by .
Step 5.3.5.2
Subtract from .
Step 5.3.5.3
Add and .
Step 5.3.6
Combine and .
Step 5.3.7
Reduce the expression by cancelling the common factors.
Step 5.3.7.1
Reduce the expression by cancelling the common factors.
Step 5.3.7.1.1
Cancel the common factor.
Step 5.3.7.1.2
Rewrite the expression.
Step 5.3.7.2
Divide by .
Step 5.3.8
Pull terms out from under the radical, assuming positive real numbers.
Step 5.4
Since and , then is the inverse of .