Enter a problem...
Calculus Examples
Step 1
Split the single integral into multiple integrals.
Step 2
Since is constant with respect to , move out of the integral.
Step 3
Step 3.1
Let . Find .
Step 3.1.1
Differentiate .
Step 3.1.2
By the Sum Rule, the derivative of with respect to is .
Step 3.1.3
Evaluate .
Step 3.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.1.3.2
Differentiate using the Power Rule which states that is where .
Step 3.1.3.3
Multiply by .
Step 3.1.4
Differentiate using the Constant Rule.
Step 3.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.1.4.2
Add and .
Step 3.2
Rewrite the problem using and .
Step 4
Step 4.1
Move the negative in front of the fraction.
Step 4.2
Combine and .
Step 5
Since is constant with respect to , move out of the integral.
Step 6
Multiply by .
Step 7
Since is constant with respect to , move out of the integral.
Step 8
Step 8.1
Simplify.
Step 8.1.1
Combine and .
Step 8.1.2
Move the negative in front of the fraction.
Step 8.2
Use to rewrite as .
Step 9
By the Power Rule, the integral of with respect to is .
Step 10
Apply the constant rule.
Step 11
Step 11.1
Simplify.
Step 11.2
Simplify.
Step 11.2.1
Multiply by .
Step 11.2.2
Multiply by .
Step 11.2.3
Multiply by .
Step 12
Replace all occurrences of with .