Enter a problem...
Calculus Examples
dx(2+cos(x)-2sin(x))sin(x)
Step 1
Since x(2+cos(x)-2sin(x))sin(x) is constant with respect to d, move x(2+cos(x)-2sin(x))sin(x) out of the integral.
x(2+cos(x)-2sin(x))sin(x)∫dd⋅d
Step 2
By the Power Rule, the integral of d with respect to d is 12d2.
x(2+cos(x)-2sin(x))sin(x)(12d2+C)
Step 3
Step 3.1
Rewrite x(2+cos(x)-2sin(x))sin(x)(12d2+C) as x2+cos(x)-2sin(x)csc(x)(12d2)+C.
x2+cos(x)-2sin(x)csc(x)(12d2)+C
Step 3.2
Simplify.
Step 3.2.1
Combine x2+cos(x)-2sin(x) and csc(x).
xcsc(x)2+cos(x)-2sin(x)(12d2)+C
Step 3.2.2
Combine 12 and d2.
xcsc(x)2+cos(x)-2sin(x)⋅d22+C
Step 3.2.3
Multiply xcsc(x)2+cos(x)-2sin(x) by d22.
xcsc(x)d2(2+cos(x)-2sin(x))⋅2+C
Step 3.2.4
Move 2 to the left of 2+cos(x)-2sin(x).
xcsc(x)d22(2+cos(x)-2sin(x))+C
xcsc(x)d22(2+cos(x)-2sin(x))+C
Step 3.3
Simplify.
Step 3.3.1
Simplify the numerator.
Step 3.3.1.1
Rewrite csc(x) in terms of sines and cosines.
x1sin(x)d22(2+cos(x)-2sin(x))+C
Step 3.3.1.2
Combine exponents.
Step 3.3.1.2.1
Combine x and 1sin(x).
xsin(x)d22(2+cos(x)-2sin(x))+C
Step 3.3.1.2.2
Combine xsin(x) and d2.
xd2sin(x)2(2+cos(x)-2sin(x))+C
xd2sin(x)2(2+cos(x)-2sin(x))+C
xd2sin(x)2(2+cos(x)-2sin(x))+C
Step 3.3.2
Multiply the numerator by the reciprocal of the denominator.
xd2sin(x)⋅12(2+cos(x)-2sin(x))+C
Step 3.3.3
Combine.
xd2⋅1sin(x)(2(2+cos(x)-2sin(x)))+C
Step 3.3.4
Multiply x by 1.
d2⋅xsin(x)⋅2(2+cos(x)-2sin(x))+C
Step 3.3.5
Move 2 to the left of sin(x).
d2x2sin(x)(2+cos(x)-2sin(x))+C
d2x2sin(x)(2+cos(x)-2sin(x))+C
d2x2sin(x)(2+cos(x)-2sin(x))+C