Enter a problem...
Calculus Examples
Step 1
Subtract from both sides of the inequality.
Step 2
Step 2.1
Factor out of .
Step 2.1.1
Factor out of .
Step 2.1.2
Factor out of .
Step 2.1.3
Factor out of .
Step 2.2
To write as a fraction with a common denominator, multiply by .
Step 2.3
Combine and .
Step 2.4
Combine the numerators over the common denominator.
Step 2.5
Simplify the numerator.
Step 2.5.1
Apply the distributive property.
Step 2.5.2
Multiply by .
Step 2.5.3
Apply the distributive property.
Step 2.5.4
Multiply by .
Step 2.5.5
Multiply by .
Step 2.5.6
Subtract from .
Step 2.5.7
Add and .
Step 2.6
Factor out of .
Step 2.7
Rewrite as .
Step 2.8
Factor out of .
Step 2.9
Rewrite as .
Step 2.10
Move the negative in front of the fraction.
Step 3
Find all the values where the expression switches from negative to positive by setting each factor equal to and solving.
Step 4
Add to both sides of the equation.
Step 5
Add to both sides of the equation.
Step 6
Step 6.1
Divide each term in by .
Step 6.2
Simplify the left side.
Step 6.2.1
Cancel the common factor of .
Step 6.2.1.1
Cancel the common factor.
Step 6.2.1.2
Divide by .
Step 7
Solve for each factor to find the values where the absolute value expression goes from negative to positive.
Step 8
Consolidate the solutions.
Step 9
Step 9.1
Set the denominator in equal to to find where the expression is undefined.
Step 9.2
Solve for .
Step 9.2.1
Add to both sides of the equation.
Step 9.2.2
Divide each term in by and simplify.
Step 9.2.2.1
Divide each term in by .
Step 9.2.2.2
Simplify the left side.
Step 9.2.2.2.1
Cancel the common factor of .
Step 9.2.2.2.1.1
Cancel the common factor.
Step 9.2.2.2.1.2
Divide by .
Step 9.3
The domain is all values of that make the expression defined.
Step 10
Use each root to create test intervals.
Step 11
Step 11.1
Test a value on the interval to see if it makes the inequality true.
Step 11.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 11.1.2
Replace with in the original inequality.
Step 11.1.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 11.2
Test a value on the interval to see if it makes the inequality true.
Step 11.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 11.2.2
Replace with in the original inequality.
Step 11.2.3
The left side is not less than the right side , which means that the given statement is false.
False
False
Step 11.3
Test a value on the interval to see if it makes the inequality true.
Step 11.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 11.3.2
Replace with in the original inequality.
Step 11.3.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 11.4
Compare the intervals to determine which ones satisfy the original inequality.
True
False
True
True
False
True
Step 12
The solution consists of all of the true intervals.
or
Step 13
Convert the inequality to interval notation.
Step 14