Enter a problem...
Calculus Examples
Step 1
Convert the inequality to an equation.
Step 2
Step 2.1
Rewrite as .
Step 2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 2.3
Rewrite the polynomial.
Step 2.4
Factor using the perfect square trinomial rule , where and .
Step 3
Set the equal to .
Step 4
Subtract from both sides of the equation.
Step 5
Use each root to create test intervals.
Step 6
Step 6.1
Test a value on the interval to see if it makes the inequality true.
Step 6.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.1.2
Replace with in the original inequality.
Step 6.1.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 6.2
Test a value on the interval to see if it makes the inequality true.
Step 6.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 6.2.2
Replace with in the original inequality.
Step 6.2.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 6.3
Compare the intervals to determine which ones satisfy the original inequality.
True
True
True
True
Step 7
The solution consists of all of the true intervals.
or
Step 8
Convert the inequality to interval notation.
Step 9