Enter a problem...
Calculus Examples
Step 1
Step 1.1
Let . Find .
Step 1.1.1
Differentiate .
Step 1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 1.1.3
Differentiate using the Power Rule which states that is where .
Step 1.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5
Add and .
Step 1.2
Rewrite the problem using and .
Step 2
Add and .
Step 3
Step 3.1
Apply the distributive property.
Step 3.2
Apply the distributive property.
Step 3.3
Apply the distributive property.
Step 3.4
Apply the distributive property.
Step 3.5
Apply the distributive property.
Step 3.6
Apply the distributive property.
Step 3.7
Reorder and .
Step 3.8
Raise to the power of .
Step 3.9
Raise to the power of .
Step 3.10
Use the power rule to combine exponents.
Step 3.11
Add and .
Step 3.12
Raise to the power of .
Step 3.13
Use the power rule to combine exponents.
Step 3.14
Add and .
Step 3.15
Raise to the power of .
Step 3.16
Raise to the power of .
Step 3.17
Use the power rule to combine exponents.
Step 3.18
Add and .
Step 3.19
Raise to the power of .
Step 3.20
Raise to the power of .
Step 3.21
Use the power rule to combine exponents.
Step 3.22
Add and .
Step 3.23
Multiply by .
Step 3.24
Subtract from .
Step 4
Split the single integral into multiple integrals.
Step 5
By the Power Rule, the integral of with respect to is .
Step 6
Since is constant with respect to , move out of the integral.
Step 7
By the Power Rule, the integral of with respect to is .
Step 8
Since is constant with respect to , move out of the integral.
Step 9
By the Power Rule, the integral of with respect to is .
Step 10
Step 10.1
Simplify.
Step 10.2
Simplify.
Step 10.2.1
Combine and .
Step 10.2.2
Combine and .
Step 10.2.3
Cancel the common factor of and .
Step 10.2.3.1
Factor out of .
Step 10.2.3.2
Cancel the common factors.
Step 10.2.3.2.1
Factor out of .
Step 10.2.3.2.2
Cancel the common factor.
Step 10.2.3.2.3
Rewrite the expression.
Step 10.2.3.2.4
Divide by .
Step 11
Replace all occurrences of with .
Step 12
Reorder terms.