Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Step 2.1
Differentiate using the chain rule, which states that is where and .
Step 2.1.1
To apply the Chain Rule, set as .
Step 2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.1.3
Replace all occurrences of with .
Step 2.2
Rewrite as .
Step 3
Step 3.1
Differentiate using the Quotient Rule which states that is where and .
Step 3.2
Differentiate.
Step 3.2.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.4
Simplify the expression.
Step 3.2.4.1
Add and .
Step 3.2.4.2
Move to the left of .
Step 3.2.5
By the Sum Rule, the derivative of with respect to is .
Step 3.2.6
Differentiate using the Power Rule which states that is where .
Step 3.2.7
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.8
Simplify the expression.
Step 3.2.8.1
Add and .
Step 3.2.8.2
Multiply by .
Step 3.3
Simplify.
Step 3.3.1
Apply the distributive property.
Step 3.3.2
Apply the distributive property.
Step 3.3.3
Apply the distributive property.
Step 3.3.4
Apply the distributive property.
Step 3.3.5
Simplify the numerator.
Step 3.3.5.1
Combine the opposite terms in .
Step 3.3.5.1.1
Subtract from .
Step 3.3.5.1.2
Add and .
Step 3.3.5.2
Simplify each term.
Step 3.3.5.2.1
Multiply by .
Step 3.3.5.2.2
Multiply by .
Step 3.3.5.3
Add and .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Divide each term in by .
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of .
Step 5.2.1.1
Cancel the common factor.
Step 5.2.1.2
Rewrite the expression.
Step 5.2.2
Cancel the common factor of .
Step 5.2.2.1
Cancel the common factor.
Step 5.2.2.2
Divide by .
Step 5.3
Simplify the right side.
Step 5.3.1
Multiply the numerator by the reciprocal of the denominator.
Step 5.3.2
Combine.
Step 5.3.3
Cancel the common factor of and .
Step 5.3.3.1
Factor out of .
Step 5.3.3.2
Cancel the common factors.
Step 5.3.3.2.1
Factor out of .
Step 5.3.3.2.2
Cancel the common factor.
Step 5.3.3.2.3
Rewrite the expression.
Step 5.3.4
Simplify the expression.
Step 5.3.4.1
Multiply by .
Step 5.3.4.2
Reorder factors in .
Step 6
Replace with .