Calculus Examples

Find dS/dA s=330A-0.20A^3
Step 1
Differentiate both sides of the equation.
Step 2
Since is constant with respect to , the derivative of with respect to is .
Step 3
Differentiate the right side of the equation.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Multiply by .
Step 3.3
Evaluate .
Tap for more steps...
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Multiply by .
Step 3.4
Reorder terms.
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Solve for .
Tap for more steps...
Step 5.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 5.2
Subtract from both sides of the equation.
Step 5.3
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Divide by .
Step 5.3.3
Simplify the right side.
Tap for more steps...
Step 5.3.3.1
Divide by .
Step 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.5
Simplify .
Tap for more steps...
Step 5.5.1
Rewrite as .
Tap for more steps...
Step 5.5.1.1
Factor out of .
Step 5.5.1.2
Rewrite as .
Step 5.5.2
Pull terms out from under the radical.
Step 5.6
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 5.6.1
First, use the positive value of the to find the first solution.
Step 5.6.2
Next, use the negative value of the to find the second solution.
Step 5.6.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 6
Replace with .
Step 7
The result can be shown in multiple forms.
Exact Form:
Decimal Form: