Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
The derivative of with respect to is .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the chain rule, which states that is where and .
Step 2.3.2.1
To apply the Chain Rule, set as .
Step 2.3.2.2
The derivative of with respect to is .
Step 2.3.2.3
Replace all occurrences of with .
Step 2.3.3
Rewrite as .
Step 2.3.4
Multiply by .
Step 2.4
Evaluate .
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Differentiate using the Product Rule which states that is where and .
Step 2.4.3
Differentiate using the chain rule, which states that is where and .
Step 2.4.3.1
To apply the Chain Rule, set as .
Step 2.4.3.2
The derivative of with respect to is .
Step 2.4.3.3
Replace all occurrences of with .
Step 2.4.4
Rewrite as .
Step 2.4.5
The derivative of with respect to is .
Step 2.5
Differentiate using the Power Rule which states that is where .
Step 2.6
Simplify.
Step 2.6.1
Apply the distributive property.
Step 2.6.2
Multiply by .
Step 2.6.3
Reorder terms.
Step 3
Since is constant with respect to , the derivative of with respect to is .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Simplify the left side.
Step 5.1.1
Reorder factors in .
Step 5.2
Move all terms not containing to the right side of the equation.
Step 5.2.1
Add to both sides of the equation.
Step 5.2.2
Subtract from both sides of the equation.
Step 5.2.3
Subtract from both sides of the equation.
Step 5.3
Factor out of .
Step 5.3.1
Factor out of .
Step 5.3.2
Factor out of .
Step 5.3.3
Factor out of .
Step 5.4
Divide each term in by and simplify.
Step 5.4.1
Divide each term in by .
Step 5.4.2
Simplify the left side.
Step 5.4.2.1
Cancel the common factor of .
Step 5.4.2.1.1
Cancel the common factor.
Step 5.4.2.1.2
Rewrite the expression.
Step 5.4.2.2
Cancel the common factor of .
Step 5.4.2.2.1
Cancel the common factor.
Step 5.4.2.2.2
Divide by .
Step 5.4.3
Simplify the right side.
Step 5.4.3.1
Simplify each term.
Step 5.4.3.1.1
Separate fractions.
Step 5.4.3.1.2
Rewrite as a product.
Step 5.4.3.1.3
Write as a fraction with denominator .
Step 5.4.3.1.4
Simplify.
Step 5.4.3.1.4.1
Divide by .
Step 5.4.3.1.4.2
Convert from to .
Step 5.4.3.1.5
Multiply .
Step 5.4.3.1.5.1
Combine and .
Step 5.4.3.1.5.2
Combine and .
Step 5.4.3.1.6
Move to the left of .
Step 5.4.3.1.7
Separate fractions.
Step 5.4.3.1.8
Convert from to .
Step 5.4.3.1.9
Move the negative in front of the fraction.
Step 5.4.3.1.10
Combine and .
Step 5.4.3.1.11
Separate fractions.
Step 5.4.3.1.12
Rewrite as a product.
Step 5.4.3.1.13
Write as a fraction with denominator .
Step 5.4.3.1.14
Simplify.
Step 5.4.3.1.14.1
Divide by .
Step 5.4.3.1.14.2
Convert from to .
Step 5.4.3.1.15
Move the negative in front of the fraction.
Step 5.4.3.1.16
Multiply .
Step 5.4.3.1.16.1
Combine and .
Step 5.4.3.1.16.2
Combine and .
Step 5.4.3.1.17
Move to the left of .
Step 5.4.3.2
Simplify terms.
Step 5.4.3.2.1
Combine the numerators over the common denominator.
Step 5.4.3.2.2
Factor out of .
Step 5.4.3.2.2.1
Factor out of .
Step 5.4.3.2.2.2
Factor out of .
Step 5.4.3.2.2.3
Factor out of .
Step 5.4.3.2.3
Combine the numerators over the common denominator.
Step 5.4.3.2.4
Factor out of .
Step 5.4.3.2.4.1
Factor out of .
Step 5.4.3.2.4.2
Factor out of .
Step 5.4.3.2.5
Rewrite as .
Step 5.4.3.2.6
Factor out of .
Step 5.4.3.2.7
Factor out of .
Step 5.4.3.2.8
Move the negative in front of the fraction.
Step 6
Replace with .