Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Differentiate using the Power Rule which states that is where .
Step 3
Step 3.1
Factor out of .
Step 3.1.1
Factor out of .
Step 3.1.2
Raise to the power of .
Step 3.1.3
Factor out of .
Step 3.1.4
Factor out of .
Step 3.2
Differentiate using the Quotient Rule which states that is where and .
Step 3.3
Differentiate.
Step 3.3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.3
Add and .
Step 3.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Rewrite as .
Step 3.5
Differentiate using the Product Rule which states that is where and .
Step 3.6
Differentiate.
Step 3.6.1
By the Sum Rule, the derivative of with respect to is .
Step 3.6.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.7
Rewrite as .
Step 3.8
Since is constant with respect to , the derivative of with respect to is .
Step 3.9
Add and .
Step 3.10
Rewrite as .
Step 3.11
Simplify.
Step 3.11.1
Apply the product rule to .
Step 3.11.2
Apply the distributive property.
Step 3.11.3
Apply the distributive property.
Step 3.11.4
Apply the distributive property.
Step 3.11.5
Apply the distributive property.
Step 3.11.6
Simplify the numerator.
Step 3.11.6.1
Simplify each term.
Step 3.11.6.1.1
Multiply by by adding the exponents.
Step 3.11.6.1.1.1
Move .
Step 3.11.6.1.1.2
Multiply by .
Step 3.11.6.1.2
Move to the left of .
Step 3.11.6.1.3
Multiply by .
Step 3.11.6.1.4
Rewrite using the commutative property of multiplication.
Step 3.11.6.1.5
Simplify each term.
Step 3.11.6.1.5.1
Multiply by .
Step 3.11.6.1.5.2
Multiply by .
Step 3.11.6.1.6
Simplify each term.
Step 3.11.6.1.6.1
Rewrite using the commutative property of multiplication.
Step 3.11.6.1.6.2
Multiply by .
Step 3.11.6.1.7
Add and .
Step 3.11.6.1.8
Expand using the FOIL Method.
Step 3.11.6.1.8.1
Apply the distributive property.
Step 3.11.6.1.8.2
Apply the distributive property.
Step 3.11.6.1.8.3
Apply the distributive property.
Step 3.11.6.1.9
Simplify and combine like terms.
Step 3.11.6.1.9.1
Simplify each term.
Step 3.11.6.1.9.1.1
Multiply by .
Step 3.11.6.1.9.1.2
Multiply by by adding the exponents.
Step 3.11.6.1.9.1.2.1
Move .
Step 3.11.6.1.9.1.2.2
Multiply by .
Step 3.11.6.1.9.1.3
Multiply by .
Step 3.11.6.1.9.2
Add and .
Step 3.11.6.2
Add and .
Step 3.11.6.3
Subtract from .
Step 3.11.7
Factor out of .
Step 3.11.7.1
Factor out of .
Step 3.11.7.2
Factor out of .
Step 3.11.7.3
Factor out of .
Step 3.11.7.4
Factor out of .
Step 3.11.7.5
Factor out of .
Step 3.11.8
Reorder factors in .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Rewrite the equation as .
Step 5.2
Multiply both sides by .
Step 5.3
Simplify.
Step 5.3.1
Simplify the left side.
Step 5.3.1.1
Simplify .
Step 5.3.1.1.1
Cancel the common factor of .
Step 5.3.1.1.1.1
Cancel the common factor.
Step 5.3.1.1.1.2
Rewrite the expression.
Step 5.3.1.1.2
Apply the distributive property.
Step 5.3.1.1.3
Reorder.
Step 5.3.1.1.3.1
Move .
Step 5.3.1.1.3.2
Move .
Step 5.3.2
Simplify the right side.
Step 5.3.2.1
Multiply by .
Step 5.4
Solve for .
Step 5.4.1
Simplify .
Step 5.4.1.1
Rewrite as .
Step 5.4.1.2
Expand using the FOIL Method.
Step 5.4.1.2.1
Apply the distributive property.
Step 5.4.1.2.2
Apply the distributive property.
Step 5.4.1.2.3
Apply the distributive property.
Step 5.4.1.3
Simplify and combine like terms.
Step 5.4.1.3.1
Simplify each term.
Step 5.4.1.3.1.1
Rewrite using the commutative property of multiplication.
Step 5.4.1.3.1.2
Multiply by by adding the exponents.
Step 5.4.1.3.1.2.1
Move .
Step 5.4.1.3.1.2.2
Multiply by .
Step 5.4.1.3.1.3
Multiply by .
Step 5.4.1.3.1.4
Multiply by .
Step 5.4.1.3.1.5
Multiply by .
Step 5.4.1.3.1.6
Multiply by .
Step 5.4.1.3.2
Add and .
Step 5.4.1.4
Apply the distributive property.
Step 5.4.1.5
Simplify.
Step 5.4.1.5.1
Rewrite using the commutative property of multiplication.
Step 5.4.1.5.2
Rewrite using the commutative property of multiplication.
Step 5.4.1.5.3
Multiply by .
Step 5.4.1.6
Simplify each term.
Step 5.4.1.6.1
Multiply by by adding the exponents.
Step 5.4.1.6.1.1
Move .
Step 5.4.1.6.1.2
Use the power rule to combine exponents.
Step 5.4.1.6.1.3
Add and .
Step 5.4.1.6.2
Multiply by by adding the exponents.
Step 5.4.1.6.2.1
Move .
Step 5.4.1.6.2.2
Multiply by .
Step 5.4.1.6.2.2.1
Raise to the power of .
Step 5.4.1.6.2.2.2
Use the power rule to combine exponents.
Step 5.4.1.6.2.3
Add and .
Step 5.4.2
Factor out of .
Step 5.4.2.1
Factor out of .
Step 5.4.2.2
Factor out of .
Step 5.4.2.3
Factor out of .
Step 5.4.2.4
Factor out of .
Step 5.4.2.5
Factor out of .
Step 5.4.3
Divide each term in by and simplify.
Step 5.4.3.1
Divide each term in by .
Step 5.4.3.2
Simplify the left side.
Step 5.4.3.2.1
Cancel the common factor of .
Step 5.4.3.2.1.1
Cancel the common factor.
Step 5.4.3.2.1.2
Divide by .
Step 5.4.3.3
Simplify the right side.
Step 5.4.3.3.1
Combine the numerators over the common denominator.
Step 5.4.3.3.2
Simplify the numerator.
Step 5.4.3.3.2.1
Factor out of .
Step 5.4.3.3.2.1.1
Factor out of .
Step 5.4.3.3.2.1.2
Factor out of .
Step 5.4.3.3.2.1.3
Multiply by .
Step 5.4.3.3.2.1.4
Factor out of .
Step 5.4.3.3.2.1.5
Factor out of .
Step 5.4.3.3.2.2
Factor using the perfect square rule.
Step 5.4.3.3.2.2.1
Rewrite as .
Step 5.4.3.3.2.2.2
Rewrite as .
Step 5.4.3.3.2.2.3
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 5.4.3.3.2.2.4
Rewrite the polynomial.
Step 5.4.3.3.2.2.5
Factor using the perfect square trinomial rule , where and .
Step 6
Replace with .