Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
The derivative of with respect to is .
Step 3
Step 3.1
Differentiate using the Constant Multiple Rule.
Step 3.1.1
Factor out of .
Step 3.1.1.1
Factor out of .
Step 3.1.1.2
Factor out of .
Step 3.1.1.3
Factor out of .
Step 3.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Differentiate using the Product Rule which states that is where and .
Step 3.3
Differentiate.
Step 3.3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.3
Differentiate using the Power Rule which states that is where .
Step 3.3.4
Multiply by .
Step 3.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.6
Simplify the expression.
Step 3.3.6.1
Add and .
Step 3.3.6.2
Move to the left of .
Step 3.3.7
Differentiate using the Power Rule which states that is where .
Step 3.3.8
Simplify by adding terms.
Step 3.3.8.1
Multiply by .
Step 3.3.8.2
Add and .
Step 3.4
Simplify.
Step 3.4.1
Apply the distributive property.
Step 3.4.2
Combine terms.
Step 3.4.2.1
Combine and .
Step 3.4.2.2
Combine and .
Step 3.4.2.3
Combine and .
Step 3.4.2.4
Move the negative in front of the fraction.
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Replace with .