Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Differentiate using the chain rule, which states that is where and .
Step 2.2.1.1
To apply the Chain Rule, set as .
Step 2.2.1.2
The derivative of with respect to is .
Step 2.2.1.3
Replace all occurrences of with .
Step 2.2.2
Differentiate using the Product Rule which states that is where and .
Step 2.2.3
Rewrite as .
Step 2.2.4
Differentiate using the Power Rule which states that is where .
Step 2.2.5
Multiply by .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Simplify.
Step 2.4.1
Apply the distributive property.
Step 2.4.2
Combine terms.
Step 2.4.2.1
Combine and .
Step 2.4.2.2
Combine and .
Step 2.4.2.3
Cancel the common factor of .
Step 2.4.2.3.1
Cancel the common factor.
Step 2.4.2.3.2
Rewrite the expression.
Step 2.4.2.4
Combine and .
Step 2.4.2.5
Cancel the common factor of .
Step 2.4.2.5.1
Cancel the common factor.
Step 2.4.2.5.2
Rewrite the expression.
Step 3
Since is constant with respect to , the derivative of with respect to is .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Move all terms not containing to the right side of the equation.
Step 5.1.1
Subtract from both sides of the equation.
Step 5.1.2
Subtract from both sides of the equation.
Step 5.2
Multiply both sides by .
Step 5.3
Simplify.
Step 5.3.1
Simplify the left side.
Step 5.3.1.1
Cancel the common factor of .
Step 5.3.1.1.1
Cancel the common factor.
Step 5.3.1.1.2
Rewrite the expression.
Step 5.3.2
Simplify the right side.
Step 5.3.2.1
Simplify .
Step 5.3.2.1.1
Apply the distributive property.
Step 5.3.2.1.2
Combine and .
Step 6
Replace with .