Calculus Examples

Find dy/dx y=x^3(2x-1)^5
Step 1
Differentiate both sides of the equation.
Step 2
The derivative of with respect to is .
Step 3
Differentiate the right side of the equation.
Tap for more steps...
Step 3.1
Differentiate using the Product Rule which states that is where and .
Step 3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.2.1
To apply the Chain Rule, set as .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Replace all occurrences of with .
Step 3.3
Differentiate.
Tap for more steps...
Step 3.3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.3
Differentiate using the Power Rule which states that is where .
Step 3.3.4
Multiply by .
Step 3.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.6
Simplify the expression.
Tap for more steps...
Step 3.3.6.1
Add and .
Step 3.3.6.2
Multiply by .
Step 3.3.7
Differentiate using the Power Rule which states that is where .
Step 3.3.8
Move to the left of .
Step 3.4
Simplify.
Tap for more steps...
Step 3.4.1
Factor out of .
Tap for more steps...
Step 3.4.1.1
Factor out of .
Step 3.4.1.2
Factor out of .
Step 3.4.1.3
Factor out of .
Step 3.4.2
Move to the left of .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Replace with .